
COSI135: Fall 2014
Assignment #3

Before you begin, you should review “curried functions” in Learn You
A Haskell: http://learnyouahaskell.com/higher-order-functions. You should
be familiar with type classes/instances and datatypes from the first assign-
ment. All are necessary, or at least extremely useful, in completing this
assignment. Some review of list comprehension will probably help, too:
http://learnyouahaskell.com/starting-out.

This assignment consists of only one file: context.hs. You should be
able to make all your edits in here.

1. You are given an “context” that consists of a list of arguments. You
can think of this as things that exist in or are considered to be true
about the current state of the world. That is, the context is the “here
and now.” You are also given a starter verb, in this case, “fly.” If you
look at the variable facts (this represents your knowledge base), you
will see it contains one item, fly john to boston. Add facts to the
knowledge base using items from the context (or add objects to the
context). You should create additional verbs to handle some of these
objects (at least two additional verbs in addition to “fly.” Some verbs
may require a prepositional adjunct, some may not. Think about what
items from the context (or items you might create) would be relevant
for the verb you are working with.

2. Next, you should write some functions to do some basic question an-
swering over your knowledge base. You should create three out of
the four following functions: qWhere, qWho, qWhat, qWhen. The func-
tions you create should answer the appropriate question. That is, if
fly john to boston is in your knowledge base, and you ask qWho fly

to boston, the code should return “John” (you can be as basic or as

1



fancy about the output as you want—the point is to get the right an-
swer). You should think about what type your functions will need to be
in order to accept a function as an argument. Note that the “questions”
should be grammatically correct with respect to their arguments. That
is, qWho fly to boston is a valid question, but qWho fly boston is
not, because boston cannot be flown, but can be flown to. The follow-
ing pointers may come in useful:

Type facts to view your complete knowledge base. Pay attention
to how it is organized and think about what methods you can use to
isolate particular elements of the knowledge base and what information
you would need to provide.

For certain questions, the answer may take different forms. For ex-
ample, for qWhere fly john, an answer of “Boston” and answer of
“to Boston” are both acceptable. Like your verbs, your question func-
tions may need to be polymorphic.

Certain questions may accept more than one semantic type for an an-
swer. e.g. “Where” selects for a location, “who” usually selects for a
person (though not always). Consider the typing of arguments that
your questions will accept for an appropriate answer. You may create
new types if you so choose, and you absolutely do not have to account
for all the types provided at the top of the file; they are just there to
get you thinking about some of the possibilities. You only have to use
the ones relevant for the verbs you are working with or creating.

• For some extra credit, you can try to implement an answer for the
question “how,” in a form like qHow john to boston (read: ”How did
John get to Boston?”). And answer for this might be “fly,” which is a
function/predicate, not an argument. How might you account for this
in your code? What role would the argument typing play in determin-
ing an answer to “how”? (If you choose not to try to implement this
function but provide some thoughts on the preceding questions, you can
receive lesser extra credit. If you implement the function successfully,
no explanation is necessary.)

2


