
COSI135: Fall 2014
Assignment #5

This assignment builds on the vocabulary you added to the parser in the
last assignment. Your task is to build a “tense interpreter” that can handle
a large lexicon, such as the one you created, and multiple tense/aspect com-
binations.

Before you begin, you should take the provided file World.hs and add it
to the folder containing the modified parser suit from your last assignment.
We are only providing this one file, so that your tense interpreter will work
with you lexicon and your parser, and with any edits you may have made to
those. World.hs is the new entry point. In GHCI, run :l World.hs, and
that will load HRAS and all dependent modules. You should be able to run
any parser code as you have been, though in some cases, you may need to
prepend the module name to the function call (e.g. P.process).

World.hs contains 5 worlds, representing different time indices. Given an
arbitrary world as the “now,” you can consider the world to the left to be
the immediate past, the world to the left of that to be the remote past, the
world to the right of the now to the immediate future, and the world to the
right of that to be the distant future. Any worlds to the right of the distant
future are simply times further in the future, and any worlds to the left of
the remote past are simple times further in the past.

It is strongly recommended that you create a development test set of proposi-
tions with which to populate your worlds. A process had been in development
to automate this for you, but it proved to be too time-consuming to have
everyone implement it before starting the assignment. You should therefore
manually generate 20-30 sentences that can be parsed by your parser, using
a wide span of verbs and tenses, and distribute them randomly over the five
worlds in World.hs by adding those strings to the “propositions” fields of the
worlds. There should be about 10 propositions per world, and there should

1



definitely be some propositions used in multiple worlds. You should assume
a closed world: if a proposition is not true (i.e. stated) in a world, it should
be considered to be false in that world.

There are four temporal operators that can combine with your proposition:
H, P, F, and G, defined as follows:

1. H — the global past. Hφ means that φ is true at all past worlds.

2. P — somewhere in the past. Pφ means that φ is true at at least one
past world. Hφ necessarily entails Pφ.

3. F — somewhere in the future. Fφ means that φ is true at at least one
future world. Under the modal interpretation used here, F is considered
to also contain the present, so if φ is true now, Fφ is also true.

4. G — the global future. Gφ means that φ is true at all future worlds
(including the present, as above). Gφ necessarily entails Fφ.

World.hs contains a datatype TProp, which is the combination of a tem-
poral operator (datatype TemporalOperator) and a proposition (datatype
String).

You need to implement four functions: isValid, isSatisfiable, isSatisfied
and entailments.:

• isValid — determine if a temporal proposition is valid in this model.
That is, if given F“John eats”, isValid should return true if F“John
eats” is true at all worlds. In this example, if “John eats” is true at w5,
F“John eats” would be valid in the model since w5 is the future-most
world.

• isSatisfiable — determine if a temporal proposition is satisfiable in
this model. That is, if given F(“John eats.”), isSatisfiable should
return true if F“John eats” is true at at least one world (if there is some
world where “John eats” is true in the future or present).

• isSatisfied — determine if a temporal proposition is satisfied at the
given world. That is, if given F“John eats” at w3, isSatisfied should
return true if “John eats” is true at w3, w4, or w5. Meanwhile G“John
eats” at w3 would return true for isSatisfied only if “John eats” is true
at w3, w4, and w5.

2



• entailments — determine what a particular proposition would entail
if true at a particular world. “John ate” at w3 would entail that “John
eats” would have to be true at either w1 or w2, but you don’t know
anymore than that. However, if “John ate” is true at w2, you know
that “John eats” would have to be true at w1, since we assume there
are no worlds outside the model. The modal operators Necessarily

and Possibly (datatype ModalOperator) have been provided to help
you handle uncertainty.

You should think about what effect using different verb tenses will have
on the validity and satiability of the proposition. For instance, if “John eats”
is true at w4, does that mean that F“John will eat” is true at w2. If “John
ate” is true at w1, does that mean that P“John has eaten” is true at w3?
How about at w2? We will test your code with a variety of propositions using
sentences that can be generated from your lexicon, so your code should be
robust enough to handle any case that your parser can parse.

You should submit your modified parser suite (include all files,
even ones you didn’t make changes to). Please submit a com-
pressed archive (.zip, .tar, .rar, or other compressed formats), and
not individual files. You may work in pairs if you choose. If so, please
only submit one assignment for your group.

3


