Presupposition in DRT

Slides by Patrick Blackburn & Johan Bos (malaga4.ppt) and slightly modified by Maribel Romero (MR)

Ling391: Advanced Computational Semantics

PRESUPPOSITION

Presupposition

- ☐ Presupposition vs. Entailment
- Look at some examples of presupposition
- Look at the typical problems associated with presuppositions
- Concentrate on a DRT based approach due to Rob van der Sandt

What is presupposition?

- ■It is hard to pin down precisely what presuppositions are or how they behave
- □ Presuppositions are a bit like entailment but not quite...

Entailment

Consider:

Vincent has a car. A car is a vehicle.

■This entails:

Vincent has a vehicle.

Entailment

Consider:

Vincent has a red car.

■This entails:

Entailment and negation

☐ Entailments are typically not preserved under negation.

Entailment

Consider:

Vincent has no car. A car is a vehicle.

■This does not entail:

Vincent has a vehicle.

Entailment

Consider:

Vincent does not have a red car.

■This does not entail:

Presupposition

Consider:

Vincent cleaned his car.

■This entails:

Presupposition

Consider:

Vincent did not clean his car.

■This entails:

Entailment or presupposition

- ■We call implications preserved under negation presuppositions
- ■We call implications not preserved under negation entailments

Presupposition triggers

- □In English, presuppositions are usually triggered by lexical items
- □ There are several tricks to find out whether a lexical item is a presupposition trigger or not
- ■These tests are:
 - The negation test
 - The conditional test
 - The question test

Presupposition trigger test

■Consider the sentence:

Alex is a bachelor.

- ☐ This sentence implies that Alex is male.
- ■But are we dealing with a presupposition or entailment?

□ Alex is a bachelor.
Does this presuppose: Alex is male?

- □ Alex is a bachelor.
 Does this presuppose: Alex is male?
- Negation: Alex is not a bachelor. Implies: Alex is male? YES

- □ Alex is a bachelor.
 Does this presuppose: Alex is male?
- Negation: Alex is not a bachelor. Implies: Alex is male? YES
- Conditional: If Alex is a bachelor, then ... Implies: Alex is male? YES

- □ Alex is a bachelor.
 Does this presuppose: Alex is male?
- Negation: Alex is not a bachelor.
 Implies: Alex is male? YES
- □ Conditional: If Alex is a bachelor, then ... Implies: Alex is male? YES
- Question: Is Alex is a bachelor? Implies: Alex is male? YES

- □ Alex is a bachelor.
 Does this presuppose: Alex is male?
- Negation: Alex is not a bachelor. *Implies*: Alex is male? YES
- Conditional: If Alex is a bachelor, then ... Implies: Alex is male? YES
- Question: Is Alex is a bachelor? Implies: Alex is male? YES
- Conclusion:being a bachelor presupposes being male.

Presupposition trigger test

□Consider the sentence:

Alex is a man.

- ☐ This sentence implies that Alex is male.
- ■But are we dealing with a presupposition or entailment?

□ Alex is a man.
Does this presuppose: Alex is male?

- □ Alex is a man.
 Does this presuppose: Alex is male?
- Negation: Alex is not a man. Implies: Alex is male? NO

- □ Alex is a man.
 Does this presuppose: Alex is male?
- Negation: Alex is not a man. Implies: Alex is male? NO
- ☐ Conditional: If Alex is a man, then ... Implies: Alex is male? NO

- □ Alex is a man.
 Does this presuppose: Alex is male?
- Negation: Alex is not a man. Implies: Alex is male? NO
- ☐ Conditional: If Alex is a man, then ... *Implies*: Alex is male? NO
- Question: Is Alex is a man? Implies: Alex is male? NO

- □ Alex is a man.
 Does this presuppose: Alex is male?
- Negation: Alex is not a man. Implies: Alex is male? NO
- □ Conditional: If Alex is a man, then ...
 Implies: Alex is male? NO
- Question: Is Alex is a man? Implies: Alex is male? NO
- Conclusion: being a man does not presuppose being male.

Presupposition trigger test

□ Consider the sentence:

Butch knows that Zed is dead.

- ☐ This sentence implies Zed is dead.
- ■But are we dealing with a presupposition or entailment?

■ Butch knows that Zed is dead.
Does this presuppose: Zed is dead?

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?
- Negation: Butch does not know that Zed is dead. Implies: Zed is dead? YES

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?
- Negation: Butch does not know that Zed is dead. Implies: Zed is dead? YES
- □ Conditional: If Butch knows that Zed is dead, then ... Implies: Zed is dead? YES

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?
- Negation: Butch does not know that Zed is dead. Implies: Zed is dead? YES
- Conditional: If Butch knows that Zed is dead, then ... Implies: Zed is dead? YES
- Question: Does Butch know that Zed is dead? Implies: Zed is dead? YES

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?
- Negation: Butch does not know that Zed is dead. Implies: Zed is dead? YES
- Conditional: If Butch knows that Zed is dead, then ... Implies: Zed is dead? YES
- Question: Does Butch know that Zed is dead? Implies: Zed is dead? YES
- Conclusion:knowing P presupposes P.

Presupposition triggers

- Presupposition triggers are not rare
- English comes with a large variety of presupposition triggers

Possessives

■Example:

Mia likes <u>her</u> husband. Mia does not like <u>her</u> husband.

■Presupposition:

Mia has a husband.

To regret

■Example:

Vincent <u>regrets</u> that he left Mia alone. Vincent does not <u>regret</u> that he left Mia alone.

Presupposition:

Vincent left Mia alone.

To like

■Example:

Mia <u>likes</u> Vincent. Mia does not <u>like</u> Vincent.

Presupposition:

Mia knows Vincent.

To answer

■Example:

Butch <u>answered</u> the phone. Butch did not <u>answer</u> the phone.

■Presupposition:

The phone was ringing.

Only

■Example:

Only Jules likes big kahuna burgers. Not only Jules likes big kahuna burgers.

Presupposition:

Jules likes big kahuna burgers.

Again

■Example:

Butch escaped <u>again</u>. Butch did not escape <u>again</u>.

Presupposition:

Butch escaped once before.

To manage

■Example:

Butch manage to start the chopper. Butch did not manage to start the chopper.

Presupposition:

Butch had difficulties starting the chopper.

Third

■Example:

Butch lost for the <u>third</u> time. Butch did not loose for the <u>third</u> time.

Presupposition:

Butch lost twice before.

Continue

■Example:

Butch <u>continued</u> his race. Butch did not <u>continue</u> his race.

Presupposition:

Butch interrupted his race.

To win

■Example:

Germany won the world cup.

Germany did not win the world cup.

Presupposition:

Germany participated in the world cup.

Another

■Example:

Peter wants another beer.

Peter does not want another beer.

Presupposition:

Peter had at least one beer.

To lie

■Example:

Butch <u>lied</u> to Marsellus. Butch did not <u>lie</u> to Marsellus.

Presupposition:

Butch told something to Marsellus.

Cleft construction

■Example:

It was Butch who killed Vincent.
It was not Butch who killed Vincent.

Presupposition:

Someone killed Vincent.

Proper names

■Example:

Butch talked to <u>Marsellus</u>. Butch did not talk to <u>Marsellus</u>.

Presupposition:

There is someone named Marsellus.

Definite NP

■Example:

Butch talked to the boss. Butch did not talk to the boss.

Presupposition:

There is a boss.

Dealing with Presupposition

- □OK, so presuppositions are fairly common. But what`s the big deal?
- Problems related to presupposition:
 - The Binding Problem
 - The Denial Problem
 - The Projection Problem
- Presupposition may convey new information
 - Accommodation

The Binding Problem

■Example:

Butch nearly escaped from <u>his</u> <u>apartment</u>.

☐ Trigger "his apartment" presupposes that Butch has an apartment.

The Binding Problem

■Example:

A boxer nearly escaped from <u>his</u> <u>apartment</u>.

- ☐ Trigger "his apartment" presupposes that a boxer has an apartment.
- ■But which boxer? A boxer? Any boxer?

■Vincent does not like his wife.

■Vincent does not like his wife.

■Vincent does not like his wife, because Vincent does not have a wife!

□ Vincent does not regret killing Zed, because he did not kill Zed!

■Vincent does not regret killing Zed, because he did not kill Zed!

□Alex is not a bachelor, because she is a woman!

■Vincent does not regret killing Zed, because he did not kill Zed!

□Alex is not a bachelor, because she is a woman!

■Butch did not lie to Marsellus, because he did not tell him anything!

Consider:

Mia's husband is out of town.

Presupposes that Mia is married.

Consider:

If Mia has a husband, then Mia's husband is out of town.

■Does NOT presuppose that Mia is married.

Consider:

If Mia is married, then Mia's husband is out of town.

■Does NOT presuppose that Mia is married.

Consider:

If Mia dates Vincent, then Mia's husband is out of town.

Does presuppose that Mia is married.

Consider:

John's donkey is eating quietly in the stable.

Presupposes that John has a donkey.

Consider:

Either John has no donkey or John's donkey is eating quietly in the stable.

Does NOT presuppose that John has a donkey.

Consider:

Either John is not a donkey-owner or John's donkey is eating quietly in the stable

Does NOT presuppose that John has a donkey.

Consider:

Either John is out of hay or John's donkey is eating quietly in the stable.

Does presuppose that John has a donkey.

- Complex sentences sometimes neutralise presuppositions
- Complex` meaning here sentences with conditionals, negation, or disjunction, modals
- ☐ These sentences make it difficult to predict whether a presupposition projects or not

Accommodation

Example:

Vincent informed his boss.

- Presupposition: Vincent has a boss.
- ■What if we don't have a clue whether Vincent has a boss or not?
- Accommodation: incorporating missed information as long as this is not conflicting with other information 65

Solutions

- There is a rich literature on presupposition
- ☐ There are many different attempts to solve the problems related to presupposition
 - Many-valued logics
 - Default logics
 - Pragmatic theories
 - Non-monotonic reasoning

Van der Sandt's Theory

- Presuppositions are essentially extremely rich anaphoric pronouns
- □ Presuppositions introduce new DRSs that need to be incorporated in the discourse context
- ■It is a good way of dealing with the binding, projection, and denial problems

Van der Sandt's Theory

- ■Presuppositions introduce new DRSs that need to be incorporated in the discourse context
- ☐ There are two ways to resolve presuppositional DRSs:
 - By <u>binding</u>
 - By <u>accommodation</u>

Two birds with one stone

□ The presupposition as anaphora theory handles anaphoric pronouns and presuppositions in essentially the same way

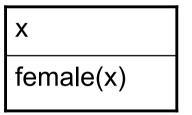
Presupposition = Anaphora

Anaphora = Presupposition

Two birds with one stone_{MR}

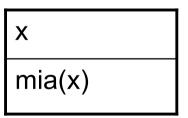
- □ Idea: In the same way that we find antecedents to bind pronouns and anaphora (1), we find antecedents to "bind" presuppositions (2):
- (1) If a farmer owns a donkey, he beats it.
- (2) If Mia has a husband, then Mia's husband is out of town.
- Note that the antecedents of anaphora and presupposition need not be individuals, but can be VP-properties, propositions, etc.
- (3) Sue likes movies, and so does Joan.
- (4) Ana stopped smoking.

One mechanism


- ☐ Essentially one mechanism to deal with pronouns, proper names, definite descriptions, etc.
- The differences are accounted for in the way they can accommodate and bind
 - Pronouns do not accommodate
 - Proper names always accommodate globally
 - Definite descriptions can accommodate anywhere

Presuppositions in DRT

- We need to carry out two tasks:
 - Select presupposition triggers in the lexicon
 - Indicate what they presuppose
- \square We will use a new operator, the alpha-operator, α
- \square If B1 and B2 are DRSs, the so is B1 α B2
- ■B1 is the presupposition of B2


Preliminary DRSs

She dances

α dance(x)

Mia dances

dance(x)

■ The woman dances

X	
woman(x)	

 α dance(x)

Presupposition in the lexicon

■ She

$$\lambda p. \frac{x}{\text{female(x)}} \alpha p@x$$

Mia

$$\lambda p. \frac{x}{\min(x)} \qquad \alpha \quad p@x$$

■ The woman

$$\lambda p. \frac{x}{\text{woman(x)}} \alpha p@x$$

Indefinite vs. Definite NP

□ A woman

$$\lambda p. \frac{x}{woman(x)}$$
; p@x

■ The woman

$$\lambda p. \frac{x}{woman(x)} \alpha p@x$$

The algorithm

- □ After constructing a preliminary DRS for an input sentences, we still have to resolve the presuppositions
- □ After resolution we will have an ordinary DRS that we can use for our inference tasks
- Resulting DRS needs to be consistent and informative

■ Example:

Vincent danced with a woman.

хуе

vincent(x)

dance(e)

agent(e,x)

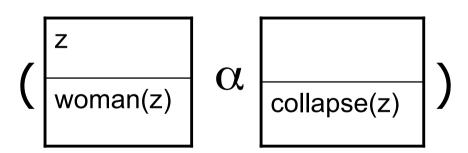
with(e,y)

woman(y)

■ Example:

Vincent danced with a woman. The woman collapsed.

x y e

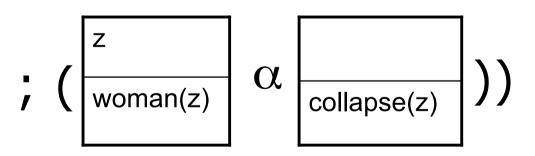

vincent(x)

dance(e)

agent(e,x)

with(e,y)

woman(y)

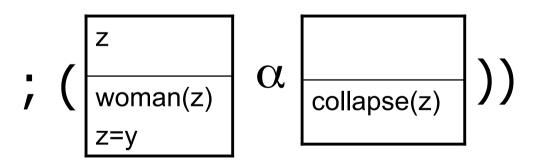


■ Example:

Vincent danced with a woman. The woman collapsed.

x y e

vincent(x)
dance(e)
agent(e,x)
with(e,y)
woman(y)


merge

■ Example:

Vincent danced with a woman. The woman collapsed.

x y e

vincent(x)
dance(e)
agent(e,x)
with(e,y)
woman(y)

pick antecedent

■ Example:

Vincent danced with a woman. The woman collapsed.

x y e z

vincent(x)
dance(e)
agent(e,x)
with(e,y)
woman(y)
woman(z)
z=y

x y e z

collapse(z)

collapse(z)

move

■ Example:

Vincent danced with a woman. The woman collapsed.

x y e z

vincent(x)

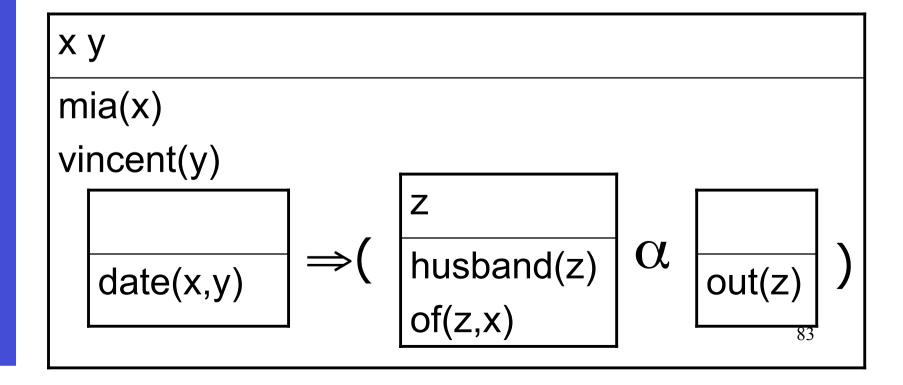
dance(e)

agent(e,x)

with(e,y)

woman(y)

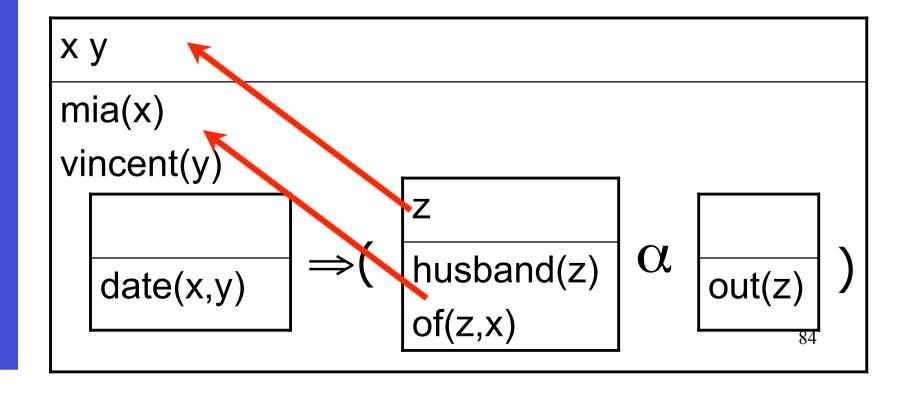
woman(z)


z=y

collapse(z)

merge reduction

Accommodating Presuppositions


Example:
If Mia dates Vincent, then her husband is out of town

Global accommodation

■ Example:

If Mia dates Vincent, then her husband is out of town

Global Accommodation

■ Example:

If Mia dates Vincent, then her husband is out of town

хуz			
mia(x)			
vincent(y)			
husband(z)			
of(z,x)			
	date(x,y)	\Rightarrow	out(z)

Non-global accommodation

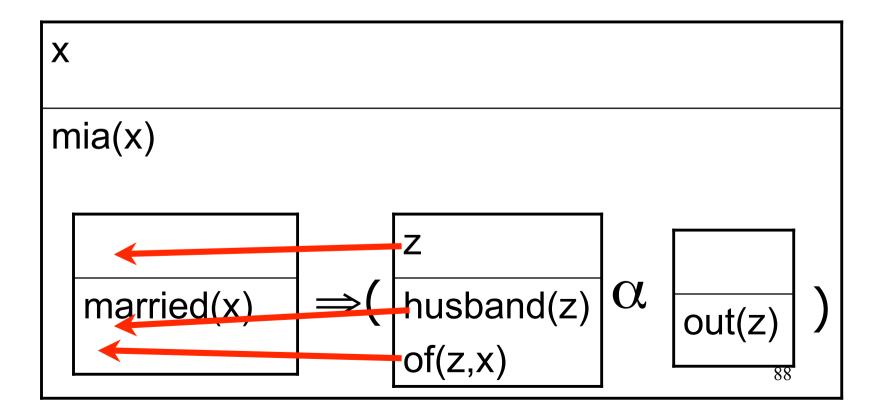
□Performing global accommodation is saying that something is presupposed.

■But recall the projection problem.

□Presuppositions can be neutralised by binding and non-global accommodation.

Non-global Accommodation

■ Example:


If Mia is married, then her husband is out of town

X						
n	nia(x)					
	married(x)	⇒(z husband(z) of(z,x)	α	out(z))

Non-global Accommodation

□ Example:

If Mia is married, then her husband is out of town

Non-global Accommodation

■ Example:

If Mia is married, then her husband is out of town

X				
n	nia(x)			
	Z			
	married(x) husband(z)	\Rightarrow		
	of(z,x)		out(z)	89

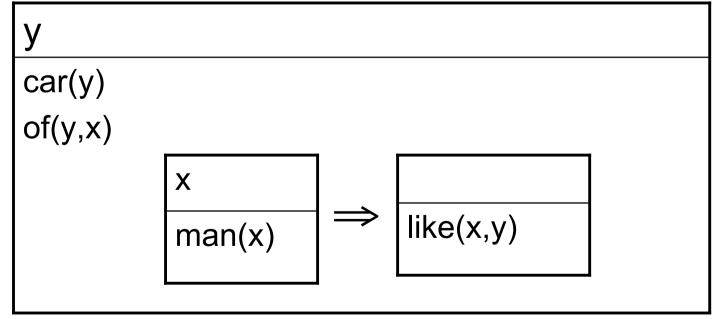
Preferences

- ■Binding is preferred to accommodation
- ☐Global accommodation is preferred to local accommodation

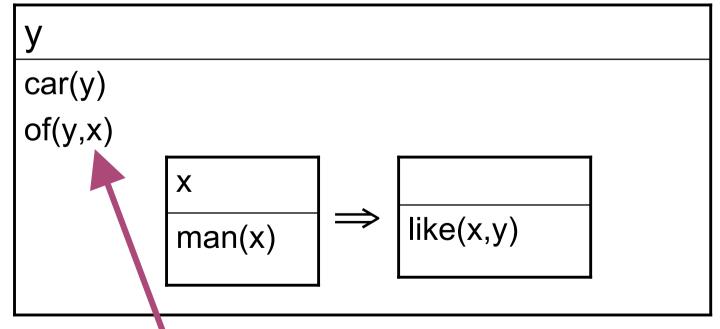
Van der Sandt's Algorithm

- 1. Generate a DRS for the input sentence, with all elementary presuppositions marked by α
- Merge this DRS with the DRS of the discourse so far processed
- 3. Traverse the DRS, and on encountering an α -DRS try to:
 - Link (MR) or bind the presupposed information to an accessible antecedent, or
 - Accommodate the information to a superordinated level of DRS
- 4. Remove those DRSs from the set of potential readings that violate the acceptability constraints

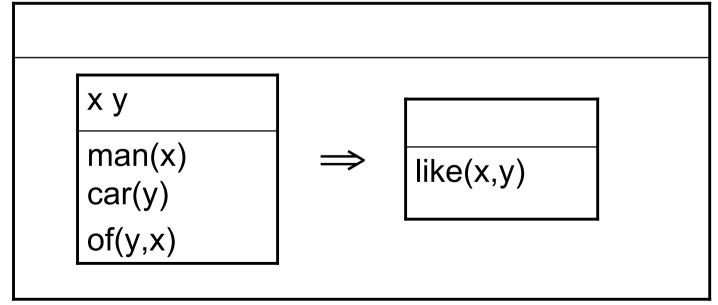
Accessibility and Subordination_{MR}

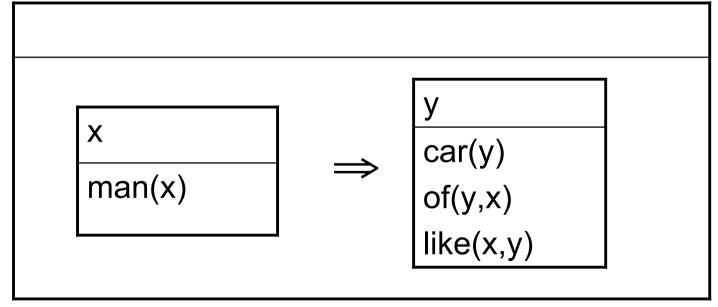

- □ A DRS B₁ is accessible from DRS B₂ when B₁ equals B₂, or when B₁ subordinates B₂
- □ A DRS B₁ subordinates B₂ iff:
 - B₁ immediately subordinates B₂
 - There is a DRS B such that B₁ subordinates B and B subordinates B₂
- \square B₁ immediately subordinates B₂ iff:
 - B₁ contains a condition ¬B₂
 - B₁ contains a condition B₂vB or BvB₂
 - B_1 contains a condition $B_2 \Rightarrow B$
 - $B_1 \Rightarrow B_2$ is a condition in some DRS B

The acceptability constraints

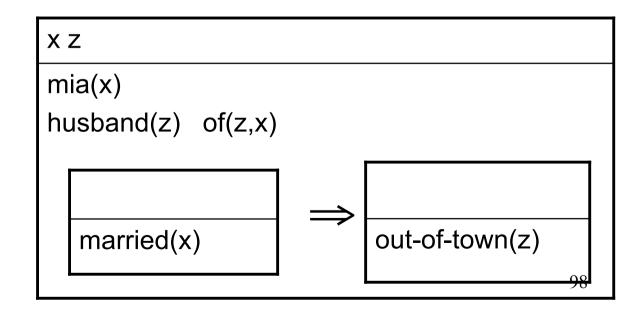

- DRSs should obey the binding rules
- DRSs should not contain free variables
- DRSs should be consistent and informative
- DRSs should also be *locally* consistent and *locally* informative

That is: the resolved DRS should not contain a subordinate DRS K whose falsity or truth is entailed by a DRS superordinate to it. (MR, from v.d.Sandt p. 367)


- ☐ Consider the example: Every man likes his car
- □ DRS obtained with global accommodation:

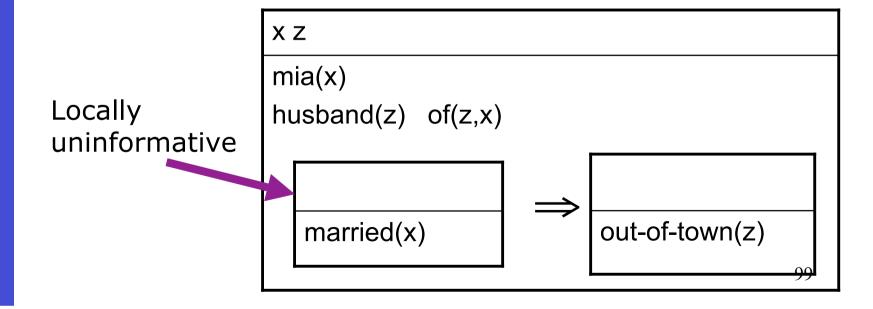

- ☐ Consider the example: Every man likes his car
- □ DRS obtained with global accommodation:

- ☐ Consider the example: Every man likes his car
- □ DRS obtained via intermediate accommodation:


- ☐ Consider the example: Every man likes his car
- □ DRS obtained with local accommodation:

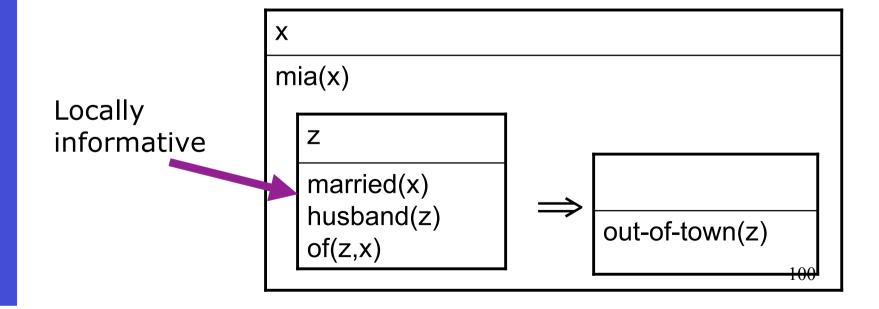
The projection problem solved

- □ Recall our example:


 If Mia is married, then her husband is out of town
- Local constraints play a crucial role here!

The projection problem solved

- □ Recall our example:


 If Mia is married, then her husband is out of town
- Local constraints play a crucial role here!

The projection problem solved

- □ Recall our example:

 If Mia is married, then her husband is out of town
- Local constraints play a crucial role here!

The projection problem solved_{MR}

Question:

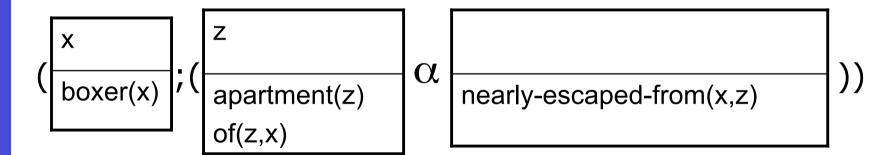
Recall our previous examples:

- (1) Either John is not a donkey-owner or his donkey is eating quietly in stable.
- (2) If Mia has a husband, then her husband is out of town.
- (3) Either John does not have a donkey or his donkey is eating quietly in the stable.
- (4) If Mia dates Vincent, then her husband is out of town.
- (5) Either John has run out of hay or his donkey is eating quietly in the stable.

For each example, show how the acceptability constraints plus the preference binding > global accomm. > local accomm. determine the projection possibilities of the presuppositions at issue.

Denial

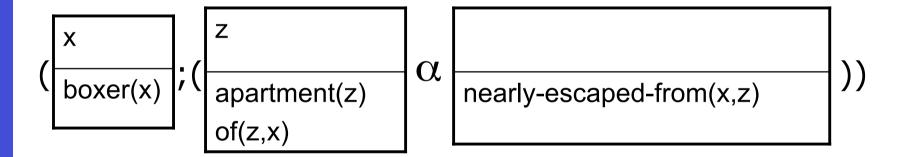
□Example:


Vincent does not like his dog.

He does not have a dog!

X		
vincent(x)		
	У	
_	dog(y) of(y,x) like(x,y)	
•	of(y,x)	
	like(x,y)	
	-	

The binding problem solved


- Example:
 - A boxer nearly escaped from his apartment.
- Preliminary DRS:

The binding problem solved

- □ Example:

 A boxer nearly escaped from his apartment.
- Preliminary DRS:

• Final DRS:

```
x z

boxer(x)

apartment(z) of (z,x)

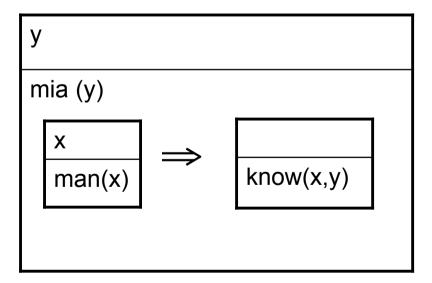
nearly-escaped-from(x,z)
```

Proper Names

- □ Proper Names can be treated as presupposition triggers
- Only global accommodation is permitted for proper names
- ☐ This assures they will always end up in the global (outermost) DRS, accessible for subsequent pronouns

Proper Names

■Example:


Every man knows Mia. She is Marsellus' wife.

x man(x)	\Rightarrow	y mia(y)	know(x,y)	

Proper Names

□Example:

Every man knows Mia. She is Marsellus' wife.

Implementation

- ■The Curt system
- Small fragment of English
 - Pronouns, presupposition triggers
- Uses theorem prover
 - Bliksem
- Uses model builder
 - Mace
- Does all inference tasks