Advanced Logic —
 Linear Temporal Logic
 Computation Tree Logic

Daniel Gebler

VU University Amsterdam

March 11, 2013

- describes properties of paths (individual executions)
- no modalities to reason about branching

Computation tree logic (CTL):

- ▶ is a branching-time logic
- time has a tree structure (multiple possible futures)
- has modalities for reasoning about the branching structure

Linear temporal logic (LTL) is defined by: $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi$ where $p \in \Omega$

LTL formulas have meaning on individual computation paths:

▶ let $\pi = s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$ a path; write π^i for $s_i \rightarrow s_{i+1} \rightarrow \ldots$

The path π satisfies ϕ , $\pi \models \phi$, is defined by:

$$\ \, \bullet \ \, \mathbf{0} \ \, \pi \models \mathsf{p} \ \, \mathsf{iff} \ \, \mathsf{s}_1 \in \mathsf{V}(\mathsf{p})$$

 $\ \, { o } \ \, \pi \models \top; \quad \pi \models \neg \phi \ \, { o } \ \, \pi \not\models \phi; \quad \pi \models \phi_1 \wedge \phi_2 \ \, { o } \ \, \pi \models \phi_1 \ \, { and } \ \, \pi \models \phi_2 \ \, \pi \models \phi_2 \ \, { and } \ \, \pi \models \phi_2 \ \, \pi \mapsto \phi_2 \ \, \pi$

LTL formulas have meaning on individual computation paths:

▶ let $\pi = s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$ a path; write π^i for $s_i \rightarrow s_{i+1} \rightarrow \ldots$

The path π satisfies ϕ , $\pi \models \phi$, is defined by:

•
$$\pi \models p$$
 iff $s_1 \in V(p)$

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi$$
where $p \in \Omega$
until

LTL formulas have meaning on individual computation paths:

▶ let $\pi = s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$ a path; write π^i for $s_i \rightarrow s_{i+1} \rightarrow \ldots$

The path π satisfies ϕ , $\pi \models \phi$, is defined by:

•
$$\pi \models p \text{ iff } s_1 \in V(p)$$

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi$$
where $p \in \Omega$
until

LTL formulas have meaning on individual computation paths:

▶ let $\pi = s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$ a path; write π^i for $s_i \rightarrow s_{i+1} \rightarrow \ldots$

The path π satisfies ϕ , $\pi \models \phi$, is defined by:

•
$$\pi \models p \text{ iff } s_1 \in V(p)$$

•
$$\pi \models \phi \cup \psi$$
 (ϕ is true until ψ is true)
• $\phi \rightarrow \phi \rightarrow \phi \rightarrow \phi \rightarrow \phi \rightarrow \psi$
formally: for some $i \ge 1$, $\pi^i \models \psi$ and for all $j < i$, $\pi^j \models \phi$

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi$$
where $p \in \Omega$
until

LTL formulas have meaning on individual computation paths:

▶ let $\pi = s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$ a path; write π^i for $s_i \rightarrow s_{i+1} \rightarrow \ldots$

The path π satisfies ϕ , $\pi \models \phi$, is defined by:

$$\begin{array}{ll} \bullet & \pi \models \phi \ \mathsf{U} \ \psi & (\phi \ \text{is true until } \psi \ \text{is true}) \\ & \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \\ \phi & \phi & \phi & \psi \end{array} \\ \text{formally: for some } i \ge 1, \ \pi^i \models \psi \ \text{and for all } j < i, \ \pi^j \models \phi \end{array}$$

Linear temporal logic (LTL) is defined by: $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi \mid F \phi \mid G \phi$ where $p \in \Omega$ until

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi \mid F \phi \mid G \phi$$
where $p \in \Omega$
until finally

Linear temporal logic (LTL) is defined by: $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi \mid F \phi \mid G \phi$ where $p \in \Omega$ until finally

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi \mid F \phi \mid G \phi$$
where $p \in \Omega$
until finally

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi \mid F \phi \mid G \phi$$
where $p \in \Omega$
until finally

•
$$\pi \models \mathsf{G} \phi \text{ iff for all } i \ge 1, \pi^i \models \phi$$

• $\phi \to \phi \to \phi$
• $\pi \models \mathsf{F} \phi \text{ iff for some } i \ge 1, \pi^i \models \phi$
• $\phi \to \phi \to \phi$

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi \mid F \phi \mid G \phi$$
where $p \in \Omega$
until finally

The modalities F and G can be defined:

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi \mid F \phi \mid G \phi$$
where $p \in \Omega$
until finally

•
$$\pi \models \mathsf{G} \phi$$
 iff for all $i \ge 1, \pi^i \models \phi$
• $\longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \phi$
• $\phi \qquad \phi \qquad \phi \qquad \phi \qquad \phi \qquad \phi \qquad \phi$
• $\pi \models \mathsf{F} \phi$ iff for some $i \ge 1, \pi^i \models \phi$
• $\longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \phi$

The modalities $\mathsf{F}\,$ and $\mathsf{G}\,$ can be defined:

$$F = \top U \phi$$
$$G \phi = \neg F \neg \phi = \neg (\top U \neg \phi)$$

Linear temporal logic (LTL) is defined by:

$$\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \cup \phi \mid X \phi \mid F \phi \mid G \phi$$
where $p \in \Omega$
until finally

•
$$\pi \models \mathsf{G} \phi$$
 iff for all $i \ge 1, \pi^i \models \phi$
• $\longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \phi$
• $\phi \qquad \phi \qquad \phi \qquad \phi \qquad \phi \qquad \phi \qquad \phi$
• $\pi \models \mathsf{F} \phi$ iff for some $i \ge 1, \pi^i \models \phi$
• $\longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \phi$

The modalities F and G can be defined:

$$\mathsf{F} = \top \mathsf{U} \phi$$
$$\mathsf{G} \phi = \neg \mathsf{F} \neg \phi = \neg (\top \mathsf{U} \neg \phi)$$

Binding strength: $\neg, X \;, F \;, G \;$ stronger than $\; U \;$ than $\land, \lor \;$ than $\rightarrow, \leftrightarrow$

LTL: Examples

F G ϕ : from some point on, ϕ holds forever

$$\begin{split} \mathfrak{M}, \pmb{s} \models \phi \text{ if } \phi \text{ is satisfied on every path starting at } \pmb{s}. \\ \mathfrak{M} \models \phi \text{ if } \phi \text{ is satisfied on every path starting from the initial state.} \end{split}$$

$$\begin{split} \mathfrak{M}, \pmb{s} \models \phi \text{ if } \phi \text{ is satisfied on every path starting at } \pmb{s}. \\ \mathfrak{M} \models \phi \text{ if } \phi \text{ is satisfied on every path starting from the initial state.} \end{split}$$

 $\mathfrak{M}, s \models \phi$ if ϕ is satisfied on every path starting at s. $\mathfrak{M} \models \phi$ if ϕ is satisfied on every path starting from the initial state.

- $? \models X$ extended $? \models F G$ extended
- $? \models X X$ extended
- $? \models F$ extended
- $? \models G$ extended
- $? \models G F$ extended

- $? \models \neg F G$ extended
- $? \models G (\neg extended \rightarrow X extended)$
- ? \models G (extended \rightarrow X \neg extended)

$$\begin{split} \mathfrak{M}, \pmb{s} \models \phi \text{ if } \phi \text{ is satisfied on every path starting at } \pmb{s}. \\ \mathfrak{M} \models \phi \text{ if } \phi \text{ is satisfied on every path starting from the initial state.} \end{split}$$

Which of the states satisfies the following?

$$\begin{split} \mathfrak{M}, s_1, s_3 &\models X \text{ extended} & ? \models F \text{ G extended} \\ ? &\models X \text{ X extended} & ? \models \neg F \text{ G extended} \\ ? &\models F \text{ extended} & ? &\models G (\neg \text{extended} \rightarrow X \text{ extended}) \\ ? &\models G \text{ extended} & ? &\models G (\text{extended} \rightarrow X \neg \text{extended}) \\ ? &\models G \text{ F extended} & ? &\models G (\text{extended} \rightarrow X \neg \text{extended}) \\ \end{cases}$$

$$\begin{split} \mathfrak{M}, \pmb{s} \models \phi \text{ if } \phi \text{ is satisfied on every path starting at } \pmb{s}. \\ \mathfrak{M} \models \phi \text{ if } \phi \text{ is satisfied on every path starting from the initial state.} \end{split}$$

$$\begin{array}{ll} \mathfrak{M}, s_1, s_3 \models X \text{ extended} & ? \models F \text{ G extended} \\ \mathfrak{M}, s_2, s_3 \models X X \text{ extended} & ? \models \neg F \text{ G extended} \\ ? \models F \text{ extended} & ? \models G (\neg \text{extended} \rightarrow X \text{ extended}) \\ ? \models G \text{ extended} & ? \models G (\text{extended} \rightarrow X \neg \text{extended}) \\ ? \models G F \text{ extended} & ? \models G (\neg \text{extended} \rightarrow X \neg \text{extended}) \\ \end{array}$$

$$\begin{split} \mathfrak{M}, \pmb{s} \models \phi \text{ if } \phi \text{ is satisfied on every path starting at } \pmb{s}. \\ \mathfrak{M} \models \phi \text{ if } \phi \text{ is satisfied on every path starting from the initial state.} \end{split}$$

$$\begin{array}{ll}\mathfrak{M}, s_1, s_3 \models \mathsf{X} \text{ extended} & ? \models \mathsf{F} \mathsf{G} \text{ extended} \\ \mathfrak{M}, s_2, s_3 \models \mathsf{X} \mathsf{X} \text{ extended} & ? \models \neg \mathsf{F} \mathsf{G} \text{ extended} \\ \mathfrak{M}, s_1, s_2, s_3 \models \mathsf{F} \text{ extended} & ? \models \mathsf{G} (\neg \text{extended} \rightarrow \mathsf{X} \text{ extended}) \\ & ? \models \mathsf{G} \text{ extended} & ? \models \mathsf{G} (\text{extended} \rightarrow \mathsf{X} \neg \text{extended}) \\ & ? \models \mathsf{G} \text{ extended} & ? \models \mathsf{G} (\text{extended} \rightarrow \mathsf{X} \neg \text{extended}) \\ & ? \models \mathsf{G} \text{ F} \text{ extended} & ? \models \mathsf{G} (\text{extended} \rightarrow \mathsf{X} \neg \text{extended}) \\ & ? \models \mathsf{G} \text{ F} \text{ extended} & ? \models \mathsf{G} (\text{extended} \rightarrow \mathsf{X} \neg \text{extended}) \\ & ? \models \mathsf{G} \text{ F} \text{ extended} & ? \models \mathsf{G} (\text{extended} \rightarrow \mathsf{X} \neg \text{extended}) \\ & ? \models \mathsf{G} \text{ extended} \\ & ? \models \mathsf{G} \text{ extended} & ? \models \mathsf{G} \text{ extende} & ? \models \mathsf{G} \text{ extend$$

$$\begin{split} \mathfrak{M}, \pmb{s} \models \phi \text{ if } \phi \text{ is satisfied on every path starting at } \pmb{s}. \\ \mathfrak{M} \models \phi \text{ if } \phi \text{ is satisfied on every path starting from the initial state.} \end{split}$$

$$\begin{array}{ll} \mathfrak{M}, s_1, s_3 \models X \text{ extended} & ? \models \mathsf{F} \mathsf{G} \text{ extended} \\ \mathfrak{M}, s_2, s_3 \models X X \text{ extended} & ? \models \neg \mathsf{F} \mathsf{G} \text{ extended} \\ \mathfrak{M}, s_1, s_2, s_3 \models \mathsf{F} \text{ extended} & ? \models \mathsf{G} (\neg \text{extended} \rightarrow X \text{ extended}) \\ \mathfrak{M}, s_3 \models \mathsf{G} \text{ extended} & ? \models \mathsf{G} (\text{extended} \rightarrow X \text{ extended}) \\ ? \models \mathsf{G} \mathsf{F} \text{ extended} & ? \models \mathsf{G} (\text{extended} \rightarrow X \neg \text{extended}) \\ \end{array}$$

$$\begin{split} \mathfrak{M}, \pmb{s} \models \phi \text{ if } \phi \text{ is satisfied on every path starting at } \pmb{s}. \\ \mathfrak{M} \models \phi \text{ if } \phi \text{ is satisfied on every path starting from the initial state.} \end{split}$$

Which of the states satisfies the following?

 $\mathfrak{M}, s_1, s_3 \models X$ extended $\mathfrak{M}, s_2, s_3 \models X X$ extended $\mathfrak{M}, s_1, s_2, s_3 \models F$ extended $\mathfrak{M}, s_3 \models G$ extended $\mathfrak{M}, s_1, s_2, s_3 \models G$ F extended

- $? \models F G$ extended
- $? \models \neg \mathsf{F} \mathsf{ G} \mathsf{ extended}$
- $? \models G (\neg extended \rightarrow X extended)$
- $? \models G \text{ (extended} \rightarrow X \neg extended)$

 $\mathfrak{M}, \mathbf{s} \models \phi$ if ϕ is satisfied on every path starting at \mathbf{s} . $\mathfrak{M} \models \phi$ if ϕ is satisfied on every path starting from the initial state.

Which of the states satisfies the following?

 $\mathfrak{M}, \mathbf{s} \models \phi$ if ϕ is satisfied on every path starting at \mathbf{s} . $\mathfrak{M} \models \phi$ if ϕ is satisfied on every path starting from the initial state.

Which of the states satisfies the following?

$$\begin{split} \mathfrak{M}, \mathbf{s} \models \phi \text{ if } \phi \text{ is satisfied on every path starting at } \mathbf{s}. \\ \mathfrak{M} \models \phi \text{ if } \phi \text{ is satisfied on every path starting from the initial state.} \end{split}$$

Which of the states satisfies the following?

 $\mathfrak{M}, \mathbf{s} \models \phi$ if ϕ is satisfied on every path starting at \mathbf{s} . $\mathfrak{M} \models \phi$ if ϕ is satisfied on every path starting from the initial state.

Which of the states satisfies the following?

 $\mathfrak{M}, \mathbf{s} \models \phi$ if ϕ is satisfied on every path starting at \mathbf{s} . $\mathfrak{M} \models \phi$ if ϕ is satisfied on every path starting from the initial state.

Which of the states satisfies the following?

LTL: Equivalence of Formulas

LTL formulas ϕ and ψ are semantically equivalent, denoted by $\phi\equiv\psi,$ if they are true for the same paths

ρ

ρ

LTL formulas ϕ and ψ are semantically equivalent, denoted by $\phi\equiv\psi,$ if they are true for the same paths

Which of the following are semantically equivalent?

X
$$(\phi \lor \psi) \equiv X \phi \lor X \psi$$
F F $\phi \equiv F \phi$ X $(\phi \land \psi) \equiv X \phi \land X \psi$ G G $\phi \equiv G \phi$ F $(\phi \land \psi) \equiv F \phi \land F \psi$ F G $\phi \equiv G F \phi$ F $(\phi \lor \psi) \equiv F \phi \lor F \psi$ $\neg F \phi \equiv G \neg \phi$ G $(\phi \land \psi) \equiv G \phi \land F \psi$ $\neg G \phi \equiv F \neg \phi$ G $(\phi \lor \psi) \equiv G \phi \lor F \psi$ F $\phi \equiv \phi \lor X (F \phi)$ U $(\phi \lor \psi) \equiv (\rho \cup \phi) \lor (\rho \cup \psi)$ G $\phi \equiv \phi \land X (G \phi)$

ρ

ρ

LTL formulas ϕ and ψ are semantically equivalent, denoted by $\phi\equiv\psi,$ if they are true for the same paths

Which of the following are semantically equivalent?

X
$$(\phi \lor \psi) \equiv X \phi \lor X \psi$$
F F $\phi \equiv F \phi$ X $(\phi \land \psi) \equiv X \phi \land X \psi$ G G $\phi \equiv G \phi$ F $(\phi \land \psi) \equiv F \phi \land F \psi$ F G $\phi \equiv G F \phi$ F $(\phi \lor \psi) \equiv F \phi \lor F \psi$ $\neg F \phi \equiv G \neg \phi$ G $(\phi \land \psi) \equiv G \phi \land F \psi$ $\neg G \phi \equiv F \neg \phi$ G $(\phi \lor \psi) \equiv G \phi \lor F \psi$ F $\phi \equiv \phi \lor X (F \phi)$ U $(\phi \lor \psi) \equiv (\rho \cup \phi) \lor (\rho \cup \psi)$ G $\phi \equiv \phi \land X (G \phi)$ U $(\phi \land \psi) \equiv (\rho \cup \phi) \land (\rho \cup \psi)$ $\phi \cup \psi \equiv \phi \cup (\phi \cup \psi)$

ρ

ρ

LTL formulas ϕ and ψ are semantically equivalent, denoted by $\phi\equiv\psi,$ if they are true for the same paths

Which of the following are semantically equivalent?

X
$$(\phi \lor \psi) \equiv X \phi \lor X \psi$$
F F $\phi \equiv F \phi$ X $(\phi \land \psi) \equiv X \phi \land X \psi$ G G $\phi \equiv G \phi$ E $(\phi \land \psi) \equiv F \phi \land F \psi$ F G $\phi \equiv G F \phi$ F $(\phi \lor \psi) \equiv F \phi \lor F \psi$ $\neg F \phi \equiv G \neg \phi$ G $(\phi \land \psi) \equiv G \phi \land F \psi$ $\neg G \phi \equiv F \neg \phi$ G $(\phi \lor \psi) \equiv G \phi \lor F \psi$ F $\phi \equiv \phi \lor X (F \phi)$ U $(\phi \lor \psi) \equiv (\rho \cup \phi) \lor (\rho \cup \psi)$ G $\phi \equiv \phi \land X (G \phi)$ U $(\phi \land \psi) \equiv (\rho \cup \phi) \land (\rho \cup \psi)$ $\phi \cup \psi \equiv \phi \cup (\phi \cup \psi)$
ρ

LTL formulas ϕ and ψ are semantically equivalent, denoted by $\phi \equiv \psi$, if they are true for the same paths

> Fφ $\neg \phi$ $\neg \phi$ $(F \phi)$ $(\mathsf{G} \phi)$

Which of the following are semantically equivalent?

$$\begin{array}{ll} \mathsf{X} (\phi \lor \psi) \equiv \mathsf{X} \phi \lor \mathsf{X} \psi & \mathsf{F} \mathsf{F} \phi \equiv \mathsf{F} \phi \\ \mathsf{X} (\phi \land \psi) \equiv \mathsf{X} \phi \land \mathsf{X} \psi & \mathsf{G} \mathsf{G} \phi \equiv \mathsf{G} \phi \\ \mathsf{E} (\phi \land \psi) \equiv \mathsf{F} \phi \land \mathsf{F} \psi & \mathsf{F} \mathsf{G} \phi \equiv \mathsf{G} \mathsf{F} \phi \\ \mathsf{F} (\phi \lor \psi) \equiv \mathsf{F} \phi \lor \mathsf{F} \psi & \neg \mathsf{F} \phi \equiv \mathsf{G} \neg \phi \\ \mathsf{G} (\phi \land \psi) \equiv \mathsf{G} \phi \land \mathsf{F} \psi & \neg \mathsf{G} \phi \equiv \mathsf{F} \neg \phi \\ \mathsf{G} (\phi \land \psi) \equiv \mathsf{G} \phi \land \mathsf{F} \psi & \neg \mathsf{G} \phi \equiv \mathsf{F} \neg \phi \\ \mathsf{G} (\phi \lor \psi) \equiv \mathsf{G} \phi \lor \mathsf{F} \psi & \mathsf{F} \phi \equiv \phi \lor \mathsf{X} (\mathsf{F} \phi) \\ \rho \: \mathsf{U} (\phi \lor \psi) \equiv (\rho \: \mathsf{U} \phi) \lor (\rho \: \mathsf{U} \psi) & \mathsf{G} \phi \equiv \phi \land \mathsf{X} (\mathsf{G} \phi) \\ \rho \: \mathsf{U} (\phi \land \psi) \equiv (\rho \: \mathsf{U} \phi) \land (\rho \: \mathsf{U} \psi) & \phi \: \mathsf{U} \psi \equiv \phi \: \mathsf{U} (\phi \: \mathsf{U} \psi) \end{array}$$

LTL formulas ϕ and ψ are semantically equivalent, denoted by $\phi\equiv\psi,$ if they are true for the same paths

Which of the following are semantically equivalent?

$$X (\phi \lor \psi) \equiv X \phi \lor X \psi$$
$$X (\phi \land \psi) \equiv X \phi \land X \psi$$
$$E (\phi \land \psi) \equiv F \phi \land F \psi$$
$$F (\phi \lor \psi) \equiv F \phi \lor F \psi$$
$$G (\phi \land \psi) \equiv G \phi \land F \psi$$
$$G (\phi \lor \psi) \equiv G \phi \lor F \psi$$
$$U (\phi \lor \psi) \equiv (\rho \lor \phi) \lor (\rho \lor \psi)$$
$$U (\phi \land \psi) \equiv (\rho \lor \phi) \land (\rho \lor \psi)$$

 ρ

$$F F \phi \equiv F \phi$$

$$G G \phi \equiv G \phi$$

$$E G \phi \equiv G F \phi$$

$$\neg F \phi \equiv G \neg \phi$$

$$\neg G \phi \equiv F \neg \phi$$

$$F \phi \equiv \phi \lor X (F \phi)$$

$$G \phi \equiv \phi \land X (G \phi)$$

$$\phi \cup \psi \equiv \phi \cup (\phi \cup \psi)$$

Mutual Exclusion

multiple processes

 \blacktriangleright a shared resource that can only be used by one process at a time

Mutual Exclusion

multiple processes

▶ a shared resource that can only be used by one process at a time

To solve conflicts: processes agree on a negotiation protocol.

mutual exclusion: never more than one process in the critical section

Mutual Exclusion

multiple processes

▶ a shared resource that can only be used by one process at a time

To solve conflicts: processes agree on a negotiation protocol.

mutual exclusion: never more than one process in the critical section

 $G \neg (C_Q \land C_P)$

boolean variable free = 1

• boolean variable free = 1

For such a program we compute the state space:

 $p1,q1,1 \longrightarrow p2,q1,1$

boolean variable free = 1

For such a program we compute the state space:

 $p1,q1,1 \longrightarrow p2,q1,1 \longrightarrow C_P,q1,0$

boolean variable free = 1

For such a program we compute the state space:

 $p1,q1,1 \longrightarrow p2,q1,1 \longrightarrow C_P,q1,0 \longrightarrow p4,q1,0$

boolean variable free = 1

For such a program we compute the state space:

 $p1,q1,1 \longrightarrow p2,q1,1 \longrightarrow C_P,q1,0 \longrightarrow p4,q1,0$

boolean variable free = 1

Model Checking

- Formalize the system design
- Pormalize the validation requirements
- Validate: system meets requirements

Mutual Exclusion: Peterson

boolean variables x = 0, y = 0, t = 0

LTL: Applications

Safety properties

"nothing bad ever happens"

```
G \neg(reactor temperature > 1000)
```

invariant: "a is always false"

Liveness properties

"something good will eventually happen"

G (ordered \rightarrow F delivered)

- termination: "the system will eventually terminate"
- response: "if action a occurs then b eventually will occur"

Deadlock freeness

- deadlock state: "a state where no actions are possible"
- no deadlocks: there is always some next state

 $\mathsf{G} \; (\neg \mathsf{terminated} \to \mathsf{X} \; \top)$

Industrial Case Studies I

Figure: After Flood Disaster (1953), Maeslant Barrier (Maeslantkering)

Verification of the interface between BOS and BESW:

- Beslis- en Ondersteunend Systeem (BOS)
- BEsturingsSysteem Waterweg (BESW)
- BOS takes the decision to move the barrier
- BESW performs this task

Even deadlocks were found in BESW!

Industrial Case Studies II

Figure: NASA Mission Critical Software: Cassini, Mars Rovers, Deep Impact

Industrial Case Studies III

• Assume A_1, A_2, \ldots are a processes each having 10 states

Assume A₁, A₂, ... are a processes each having 10 states
Then A₁ and A₂ together have 100 states.

- Assume A_1 , A_2 , ... are a processes each having 10 states
- Then A_1 and A_2 together have 100 states.
- Then A_1, \ldots, A_n together have 10^n states.

- Assume A_1 , A_2 , ... are a processes each having 10 states
- Then A_1 and A_2 together have 100 states.
- Then A_1, \ldots, A_n together have 10^n states.

This is the state space explosion problem.

- Assume A_1 , A_2 , ... are a processes each having 10 states
- Then A_1 and A_2 together have 100 states.
- Then A_1, \ldots, A_n together have 10^n states.

This is the state space explosion problem.

Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is defined by: $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \text{ EU } \phi \mid \text{EG } \phi \mid \text{EX } \phi$ where $p \in \Omega$

The formula ϕ holds model \mathfrak{M} at state $s, \mathfrak{M}, s \models \phi$, is defined by: as usual: $\mathfrak{M}, s \models \top, \mathfrak{M}, s \models p, \mathfrak{M}, s \models \neg \phi, \mathfrak{M}, s \models \phi_1 \land \phi_2$

Computation Tree Logic (CTL)

$$\begin{array}{c} \text{Computation Tree Logic (CTL) is defined by:} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \; \text{EU} \; \phi \mid \text{EG} \; \phi \mid \text{EX} \; \phi \\ \hline \text{where } p \in \Omega \end{array}$$

The formula ϕ holds model \mathfrak{M} at state $s, \mathfrak{M}, s \models \phi$, is defined by: as usual: $\mathfrak{M}, s \models \top, \mathfrak{M}, s \models p, \mathfrak{M}, s \models \neg \phi, \mathfrak{M}, s \models \phi_1 \land \phi_2$

Computation Tree Logic (CTL)

$$\begin{array}{l} \text{Computation Tree Logic (CTL) is defined by:} \quad \overbrace{\text{exists globally}}^{\text{exists globally}} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \in \mathsf{EU} \ \phi \mid \mathsf{EG} \ \phi \mid \mathsf{EX} \ \phi \\ \text{where } p \in \Omega \end{array}$$

The formula ϕ holds model \mathfrak{M} at state $s, \mathfrak{M}, s \models \phi$, is defined by: as usual: $\mathfrak{M}, s \models \top, \mathfrak{M}, s \models p, \mathfrak{M}, s \models \neg \phi, \mathfrak{M}, s \models \phi_1 \land \phi_2$
$$\begin{array}{c} \text{Computation Tree Logic (CTL) is defined by:} & \begin{array}{c} \text{exists globally} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \; \text{EU} \; \phi \mid \text{EG} \; \phi \mid \text{EX} \; \phi \\ \end{array}$$

$$\begin{array}{c} \text{where } p \in \Omega \\ \hline \end{array} \quad \begin{array}{c} \text{exists until} \\ \hline \end{array} \quad \begin{array}{c} \text{exists next} \end{array}$$

The formula ϕ holds model \mathfrak{M} at state $s, \mathfrak{M}, s \models \phi$, is defined by: as usual: $\mathfrak{M}, s \models \top, \mathfrak{M}, s \models p, \mathfrak{M}, s \models \neg \phi, \mathfrak{M}, s \models \phi_1 \land \phi_2$

$$\begin{array}{c} \text{Computation Tree Logic (CTL) is defined by:} & \begin{array}{c} \text{exists globally} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \; \text{EU} \; \phi \mid \text{EG} \; \phi \mid \text{EX} \; \phi \\ \end{array}$$

$$\begin{array}{c} \text{where } p \in \Omega \\ & \begin{array}{c} \text{exists until} \end{array} & \begin{array}{c} \text{exists next} \end{array}$$

The formula ϕ holds model \mathfrak{M} at state s, $\mathfrak{M}, s \models \phi$, is defined by:

• as usual: $\mathfrak{M}, s \models \top$, $\mathfrak{M}, s \models p$, $\mathfrak{M}, s \models \neg \phi$, $\mathfrak{M}, s \models \phi_1 \land \phi_2$

2 $\mathfrak{M}, s \models \phi \mathsf{EU} \psi$ (ϕ until ψ holds on some path starting from s)

$$\begin{array}{c} \text{Computation Tree Logic (CTL) is defined by:} & \begin{array}{c} \text{exists globally} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \; \text{EU } \phi \mid \text{EG } \phi \mid \text{EX } \phi \\ \end{array}$$

$$\begin{array}{c} \text{where } p \in \Omega \\ & \begin{array}{c} \text{exists until} \end{array} & \begin{array}{c} \text{exists next} \end{array}$$

The formula ϕ holds model \mathfrak{M} at state $s, \mathfrak{M}, s \models \phi$, is defined by:

• as usual: $\mathfrak{M}, s \models \top$, $\mathfrak{M}, s \models p$, $\mathfrak{M}, s \models \neg \phi$, $\mathfrak{M}, s \models \phi_1 \land \phi_2$

M, s ⊨ φ EU ψ (φ until ψ holds on some path starting from s) iff there is a path s = s₁ → s₂ → ..., such that for some i ≥ 1, M, s_i ⊨ ψ and for all j < i, M, s_j ⊨ φ

$$\begin{array}{c} \text{Computation Tree Logic (CTL) is defined by:} & \begin{array}{c} \text{exists globally} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \; \text{EU} \; \phi \mid \text{EG} \; \phi \mid \text{EX} \; \phi \\ \end{array}$$

$$\begin{array}{c} \text{where } p \in \Omega \\ & \begin{array}{c} \text{exists until} \end{array} & \begin{array}{c} \text{exists next} \end{array}$$

The formula ϕ holds model \mathfrak{M} at state $s, \mathfrak{M}, s \models \phi$, is defined by:

• as usual: $\mathfrak{M}, s \models \top$, $\mathfrak{M}, s \models p$, $\mathfrak{M}, s \models \neg \phi$, $\mathfrak{M}, s \models \phi_1 \land \phi_2$

M, s ⊨ φ EU ψ (φ until ψ holds on some path starting from s) iff there is a path s = s₁ → s₂ → ..., such that for some i ≥ 1, M, s_i ⊨ ψ and for all j < i, M, s_j ⊨ φ

(a) $\mathfrak{M}, s \models \mathsf{EG} \phi$ (ϕ holds globally on some path starting from s)

$$\begin{array}{c} \text{Computation Tree Logic (CTL) is defined by:} & \begin{array}{c} \text{exists globally} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \; \text{EU} \; \phi \mid \text{EG} \; \phi \mid \text{EX} \; \phi \\ \end{array}$$

$$\begin{array}{c} \text{where } p \in \Omega \\ & \begin{array}{c} \text{exists until} \end{array} & \begin{array}{c} \text{exists next} \end{array}$$

The formula ϕ holds model \mathfrak{M} at state $s, \mathfrak{M}, s \models \phi$, is defined by:

- as usual: $\mathfrak{M}, s \models \top$, $\mathfrak{M}, s \models p$, $\mathfrak{M}, s \models \neg \phi$, $\mathfrak{M}, s \models \phi_1 \land \phi_2$
- M, s ⊨ φ EU ψ (φ until ψ holds on some path starting from s) iff there is a path s = s₁ → s₂ → ..., such that for some i ≥ 1, M, s_i ⊨ ψ and for all j < i, M, s_j ⊨ φ
- M, s ⊨ EG φ (φ holds globally on some path starting from s) iff there is a path s = s₁ → s₂ → ... such that for all i ≥ 1, M, s_i ⊨ φ

$$\begin{array}{c} \text{Computation Tree Logic (CTL) is defined by:} & \begin{array}{c} \text{exists globally} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \; \text{EU} \; \phi \mid \text{EG} \; \phi \mid \text{EX} \; \phi \\ \end{array}$$

$$\begin{array}{c} \text{where } p \in \Omega \\ & \begin{array}{c} \text{exists until} \end{array} & \begin{array}{c} \text{exists next} \end{array}$$

The formula ϕ holds model \mathfrak{M} at state $s, \mathfrak{M}, s \models \phi$, is defined by:

- as usual: $\mathfrak{M}, s \models \top$, $\mathfrak{M}, s \models p$, $\mathfrak{M}, s \models \neg \phi$, $\mathfrak{M}, s \models \phi_1 \land \phi_2$
- M, s ⊨ φ EU ψ (φ until ψ holds on some path starting from s) iff there is a path s = s₁ → s₂ → ..., such that for some i ≥ 1, M, s_i ⊨ ψ and for all j < i, M, s_j ⊨ φ
- M, s ⊨ EG φ (φ holds globally on some path starting from s) iff there is a path s = s₁ → s₂ → ... such that for all i ≥ 1, M, s_i ⊨ φ

• $\mathfrak{M}, s \models \mathsf{EX} \phi$ (ϕ holds in some next state)

$$\begin{array}{c} \text{Computation Tree Logic (CTL) is defined by:} & \begin{array}{c} \text{exists globally} \\ \phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \; \text{EU} \; \phi \mid \text{EG} \; \phi \mid \text{EX} \; \phi \\ \end{array}$$

$$\begin{array}{c} \text{where } p \in \Omega \\ & \begin{array}{c} \text{exists until} \\ \end{array} \end{array} \begin{array}{c} \text{exists next} \end{array}$$

The formula ϕ holds model \mathfrak{M} at state s, $\mathfrak{M}, s \models \phi$, is defined by:

- as usual: $\mathfrak{M}, s \models \top$, $\mathfrak{M}, s \models p$, $\mathfrak{M}, s \models \neg \phi$, $\mathfrak{M}, s \models \phi_1 \land \phi_2$
- M, s ⊨ φ EU ψ (φ until ψ holds on some path starting from s) iff there is a path s = s₁ → s₂ → ..., such that for some i ≥ 1, M, s_i ⊨ ψ and for all j < i, M, s_j ⊨ φ
- M, s ⊨ EG φ (φ holds globally on some path starting from s) iff there is a path s = s₁ → s₂ → ... such that for all i ≥ 1, M, s_i ⊨ φ
- M, s ⊨ EX φ (φ holds in some next state)
 iff (M, s₂) ⊨ φ for some s₂ such that s → s₂

Computation Tree Logic (CTL) is defined by: $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \text{ EU } \phi \mid \text{EG } \phi \mid \text{EX } \phi \mid \phi \text{ AU } \phi \mid \text{AG } \phi \mid \text{AX } \phi$ where $p \in \Omega$

Computation Tree Logic (CTL) is defined by: $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi \text{ EU } \phi \mid \text{EG } \phi \mid \text{EX } \phi \mid \phi \text{ AU } \phi \mid \text{AG } \phi \mid \text{AX } \phi$ where $p \in \Omega$ always until

() $\mathfrak{M}, s \models \mathsf{AG} \phi$ (ϕ holds globally on all paths starting from s)

Computation Tree Logic (CTL) is defined by:always globally $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi$ EU $\phi \mid$ EG $\phi \mid$ EG $\phi \mid$ EX $\phi \mid \phi$ AU $\phi \mid$ AG $\phi \mid$ AX ϕ where $p \in \Omega$ always until

M, s ⊨ AG φ (φ holds globally on all paths starting from s) iff for all paths s = s₁ → s₂ → ... we have: for all i ≥ 1, M, s_i ⊨ φ

Computation Tree Logic (CTL) is defined by:always globally $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi$ EU $\phi \mid$ EG $\phi \mid$ EG $\phi \mid$ EX $\phi \mid \phi$ AU $\phi \mid$ AG $\phi \mid$ AX ϕ where $p \in \Omega$ always until

 M, s ⊨ AG φ (φ holds globally on all paths starting from s) iff for all paths s = s₁ → s₂ → ... we have: for all i ≥ 1, M, s_i ⊨ φ AG φ = ¬EF ¬φ

Computation Tree Logic (CTL) is defined by:always globally $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi$ EU $\phi \mid$ EG $\phi \mid$ EG $\phi \mid$ EX $\phi \mid \phi$ AU $\phi \mid$ AG $\phi \mid$ AX ϕ where $p \in \Omega$ always until

• $\mathfrak{M}, s \models \mathsf{AG} \phi$ (ϕ holds globally on all paths starting from s) iff for all paths $s = s_1 \rightarrow s_2 \rightarrow \ldots$ we have: for all $i \ge 1$, $\mathfrak{M}, s_i \models \phi$ $\mathsf{AG} \phi = \neg \mathsf{EF} \neg \phi$

Computation Tree Logic (CTL) is defined by:always globally $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi$ EU $\phi \mid$ EG $\phi \mid$ EG $\phi \mid$ EX $\phi \mid \phi$ AU $\phi \mid$ AG $\phi \mid$ AX ϕ where $p \in \Omega$ always until

 M, s ⊨ AG φ (φ holds globally on all paths starting from s) iff for all paths s = s₁ → s₂ → ... we have: for all i ≥ 1, M, s_i ⊨ φ AG φ = ¬EF ¬φ

② $\mathfrak{M}, s \models \mathsf{AX} \phi$ (ϕ holds in all next states) iff $(M, s_2) \models \phi$ for all s_2 such that $s \to s_2$

Computation Tree Logic (CTL) is defined by:always globally $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi$ EU $\phi \mid$ EG $\phi \mid$ EG $\phi \mid$ EX $\phi \mid \phi$ AU $\phi \mid$ AG $\phi \mid$ AX ϕ where $p \in \Omega$ always until

M, s ⊨ AG φ (φ holds globally on all paths starting from s) iff for all paths s = s₁ → s₂ → ... we have: for all i ≥ 1, M, s_i ⊨ φ AG φ = ¬EF ¬φ

$$\mathfrak{M}, s \models \mathsf{AX} \phi \quad (\phi \text{ holds in all next states})$$

iff $(M, s_2) \models \phi$ for all s_2 such that $s \rightarrow s_2$ $\mathsf{AX} \phi = \neg \mathsf{EX} \neg \phi$

Computation Tree Logic (CTL) is defined by:always globally $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi$ EU $\phi \mid$ EG $\phi \mid$ EG $\phi \mid$ EX $\phi \mid \phi$ AU $\phi \mid$ AG $\phi \mid$ AX ϕ where $p \in \Omega$ always until

M, s ⊨ AG φ (φ holds globally on all paths starting from s) iff for all paths s = s₁ → s₂ → ... we have: for all i ≥ 1, M, s_i ⊨ φ AG φ = ¬EF ¬φ

$$\mathfrak{M}, s \models \mathsf{AX} \phi \quad (\phi \text{ holds in all next states}) \\ \text{iff } (M, s_2) \models \phi \text{ for all } s_2 \text{ such that } s \to s_2 \qquad \qquad \mathsf{AX} \phi = \neg \mathsf{EX} \neg \phi$$

(a) $\mathfrak{M}, s \models \phi \land \mathsf{AU} \psi$ ($\phi \mathsf{ until } \psi \mathsf{ holds on all paths starting from <math>s$)

Computation Tree Logic (CTL) is defined by:always globally $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi$ EU $\phi \mid$ EG $\phi \mid$ EG $\phi \mid$ EX $\phi \mid \phi$ AU $\phi \mid$ AG $\phi \mid$ AX ϕ where $p \in \Omega$ always until

• $\mathfrak{M}, s \models \mathsf{AG} \phi$ (ϕ holds globally on all paths starting from s) iff for all paths $s = s_1 \rightarrow s_2 \rightarrow \ldots$ we have: for all $i \ge 1$, $\mathfrak{M}, s_i \models \phi$ $\mathsf{AG} \phi = \neg \mathsf{EF} \neg \phi$

$$\mathfrak{M}, s \models \mathsf{AX} \phi \quad (\phi \text{ holds in all next states}) \\ \text{iff } (M, s_2) \models \phi \text{ for all } s_2 \text{ such that } s \to s_2 \qquad \qquad \mathsf{AX} \phi = \neg \mathsf{EX} \neg \phi$$

M, s ⊨ φ AU ψ (φ until ψ holds on all paths starting from s) iff for all paths s = s₁ → s₂ → ... we have: for some i ≥ 1, M, s_i ⊨ ψ and for all j < i, M, s_i ⊨ φ

Computation Tree Logic (CTL) is defined by:always globally $\phi ::= p \mid \top \mid \neg \phi \mid \phi \land \phi \mid \phi$ EU $\phi \mid$ EG $\phi \mid$ EG $\phi \mid$ EX $\phi \mid \phi$ AU $\phi \mid$ AG $\phi \mid$ AX ϕ where $p \in \Omega$ always until

M, s ⊨ AG φ (φ holds globally on all paths starting from s) iff for all paths s = s₁ → s₂ → ... we have: for all i ≥ 1, M, s_i ⊨ φ AG φ = ¬EF ¬φ

$$\mathfrak{M}, s \models \mathsf{AX} \phi \quad (\phi \text{ holds in all next states}) \\ \text{iff } (M, s_2) \models \phi \text{ for all } s_2 \text{ such that } s \to s_2 \qquad \qquad \mathsf{AX} \phi = \neg \mathsf{EX} \neg \phi$$

• $\mathfrak{M}, s \models \phi \text{ AU } \psi$ (ϕ until ψ holds on all paths starting from s) iff for all paths $s = s_1 \rightarrow s_2 \rightarrow \ldots$ we have: for some $i \ge 1$, $\mathfrak{M}, s_i \models \psi$ and for all j < i, $\mathfrak{M}, s_j \models \phi$ $\phi \text{ AU } \psi = \neg(\neg \psi \text{ EU } (\neg \phi \land \neg \psi)) \land \neg \text{EG } \neg \psi$

Which of the states satisfies the following? ? \models AF t ? $\models \neg$ EG r ? \models t EU q ? \models EX q ? \models AX q ? \models EF q

 $\mathfrak{M}, s_2, s_3, s_4 \models \mathsf{AF} t$ $? \models \neg \mathsf{EG} r$ $? \models t \mathsf{EU} q$ $? \models \mathsf{EX} q$ $? \models \mathsf{EX} q$ $? \models \mathsf{EF} q$

 $\mathfrak{M}, s_2, s_3, s_4 \models \mathsf{AF} t$ $\mathfrak{M}, s_3 \models \neg \mathsf{EG} r$ $? \models t \mathsf{EU} q$ $? \models \mathsf{EX} q$ $? \models \mathsf{EX} q$ $? \models \mathsf{EF} q$

 $\mathfrak{M}, s_2, s_3, s_4 \models \mathsf{AF} t$ $\mathfrak{M}, s_3 \models \neg \mathsf{EG} r$ $\mathfrak{M}, s_2, s_3, s_4 \models t \mathsf{EU} q$ $? \models \mathsf{EX} q$ $? \models \mathsf{AX} q$ $? \models \mathsf{EF} q$

 $\mathfrak{M}, s_2, s_3, s_4 \models \mathsf{AF} t$ $\mathfrak{M}, s_3 \models \neg \mathsf{EG} r$ $\mathfrak{M}, s_2, s_3, s_4 \models t \mathsf{EU} q$ $\mathfrak{M}, s_1, s_2, s_3 \models \mathsf{EX} q$ $? \models \mathsf{AX} q$ $? \models \mathsf{EF} q$

Which of the states satisfies the following? $\mathfrak{M}, s_2, s_3, s_4 \models \mathsf{AF} t$ $\mathfrak{M}, s_3 \models \neg \mathsf{EG} r$ $\mathfrak{M}, s_2, s_3, s_4 \models t \mathsf{EU} q$

$$\mathfrak{M}, s_1, s_2, s_3 \models \mathsf{EX} q$$

 $\mathfrak{M}, s_2, s_3 \models \mathsf{AX} q$

 $\mathfrak{M}, s_2, s_3, s_4 \models \mathsf{AF} t$ $\mathfrak{M}, s_3 \models \neg \mathsf{EG} r$ $\mathfrak{M}, s_2, s_3, s_4 \models t \mathsf{EU} q$ $\mathfrak{M}, s_1, s_2, s_3 \models \mathsf{EX} q$ $\mathfrak{M}, s_2, s_3 \models \mathsf{AX} q$ $\mathfrak{M}, s_1, s_2, s_3, s_4 \models \mathsf{EF} q$

?
$$\models$$
 AG (EF *p*)
? \models AG (($q \lor r$) AU *p*)
? \models AG (EF ($q \land r$))

$$\mathfrak{M}, s_1, s_2, s_3, s_4, s_5 \models \mathsf{AG} (\mathsf{EF} p)$$
$$? \models \mathsf{AG} ((q \lor r) \mathsf{AU} p)$$
$$? \models \mathsf{AG} (\mathsf{EF} (q \land r))$$

$$\mathfrak{M}, s_1, s_2, s_3, s_4, s_5 \models \mathsf{AG} (\mathsf{EF} p)$$
$$\mathfrak{M}, s_3 \models \mathsf{AG} ((q \lor r) \mathsf{AU} p)$$
$$? \models \mathsf{AG} (\mathsf{EF} (q \land r))$$

$$\begin{split} \mathfrak{M}, s_1, s_2, s_3, s_4, s_5 &\models \mathsf{AG} \; (\mathsf{EF} \; p) \\ \mathfrak{M}, s_3 &\models \mathsf{AG} \; ((q \lor r) \; \mathsf{AU} \; p) \\ \mathfrak{M}, s_2, s_4, s_5 &\models \mathsf{AG} \; (\mathsf{EF} \; (q \land r)) \end{split}$$

$\mathsf{CTL} \text{ vs } \mathsf{LTL}$

CTL vs LTL

 \blacktriangleright a CTL formula necessitating E cannot be expressed in LTL

EX p

CTL vs LTL

 \blacktriangleright a CTL formula necessitating E cannot be expressed in LTL

EX p

• the CTL formula AF AG p cannot be expressed in LTL

CTL vs LTL

▶ a CTL formula necessitating E cannot be expressed in LTL

EX p

the CTL formula AF AG p cannot be expressed in LTL

▶ the LTL formula G F $p \rightarrow$ F q cannot be expressed in CTL