
Introducing Continuations

Chris Barker (barker@ucsd . edu)
University of California, San Diego

This working paper introduces CONTINUATIONS (a concept borrowed from computer
science) as a new technique for characterizing certain aspects of the semantics of a
natural language. I should emphasize at the outset that this is just an introduction,
and that more a rigorous and thorough treatment is under development (see Barker
(ms» . In the meantime, this paper mentions certain formal results without proving
them, and describes certain new empirical generalizations without exploring them.
What it will do is provide an explicit account of a range of familiar phenomena relat
ed to quantification, including quantifier scope ambiguity, NP as a scope island, and
generalized coordination. What makes the account noteworthy is that it provides a
fully and strictly compositional analysis of quantification and generalized coordina
tion that does not rely on syntactic movement operations such as Quantifier Move
ment, auxiliary storage mechanisms such as Cooper Storage, or type ambiguity as in
Hendriks' Flexible Types system.

1. Continuations

Continuations are a well-established technique in the theory of programming lan
guage semantics. Reynolds (1 993) gives a detailed history relating how the concept
of continuations emerged independently in the work of several computer scientists
in the 1960s and early 1970s. According to Danvy and Talcott (1 998 : 1 1 5) , continu
ations currently are "ubiquitous in many different areas of computer science, includ
ing logic, constructive mathematics, programming languages, and programming."
For instance, continuations have long played a prominent role in functional program
ming languages such as Scheme, ML, Haskell , and others .

In brief, a continuation is the entire default future of a computation. For each
subexpression, its continuation is its fate.

(1) a.

b.

c .

(7 + ((33 + 1) * x»
(33 + 1)

7

Ay.7 + (y * x)
Ay.y + ((33 + 1) * x)

Within the context of the larger expression given in (1 a), the fate of the number
denoted by the subexpression "(33 + 1)" is that it will be multiplied by the value of
x, and the result of that operation will be added to 7. Expressing this continuation
using the lambda-calculus, we have Ay.7 + (y * x). Similarly, the continuation of the
constant 7 is a function that takes an integer and adds it to the product of x and the
sum of 33 plus 1 .

Programming languages such as Scheme allow expressions to denote func
tions on their own continuation. It turns out that this one device is capable of recon-

© 2001 by Chris B arker R. Hastings, B . Jackson and Z. Zvolenszky (eds) , SALT XI 20-35, Ithaca, NY: Cornell University.

INTRODUCING CONTINUATIONS

structing most common programming control structures, including i f - then - el se
statements, goto statements, for loops, whi le loops, the throw/catch construc
tion, return, etc. Obviously, there is a strong analogy between such programming
control constructions and quantification in natural language; for instance, the truth
conditions of the sentence Every boy left can be rendered roughly as 'Foreach x in
boy {if (not (x in left» , then return (false)}' . The main idea of this paper, then, is this :
if continuations can provide a unified perspective on quantification-like structures in
formal languages, then perhaps they can provide useful insights into quantification
in natural language.

But what exactly does it mean for an expression to denote a function on its
own continuation? I will answer this question in three stages . First, I will present a
simple grammar without continuations . Then I will provide an equivalent grammar
with continuations. Finally, I will add rules that exploit the presence of continuations
in order to provide an account of quantification.

Therefore consider the following simple, context-free, extensional grammar:

(2) SYNTAX SEMANTICS
a. S � NP VP VP(NP)

b. VP � Vt NP Vt(NP)

c . NP � John j
d. NP � Mary m
e. VP � left A.x.left(x)

f. Vt � saw A.xAy.saw(y, x)

This grammar provides the following analyses, after lambda-conversion:

(3) John left. left(j)

John saw Mary. saw(j, m)

Note that this grammar operates with the following types for each syntactic category
it recognizes:

(4) SYNTACTIC SEMANTIC GLOSS ON THE SEMANTIC TYPE
CATEGORY TYPE
S t truth value
NP e entity

VP <e,t> property extension (set of entities)

Vt <e,<e,t» relation over entities

This grammar, needless to say, will not accommodate quantificational NPs .
It will be helpful to be similarly explicit about the semantic types of some of

the symbols used in the logical translation language.

21

22 Chris Barker

(5) VARIABLE TYPE
p, q t
x, Y, Z e

P, Q <e,t>
R, S <e,<e,t»

Logical constants such as j, left, and saw will have the semantic type of their cor
responding syntactic category (for these examples, e, <e,t>, and <e,<e,t» , respec
tively) .

Adding continuations to the basic grammar in (2) requires two new elements
that must be carefully distinguished: continuations, and continuized denotations.

A continuation is a function from a normal (uncontinuized) value to the
result of the entire computation. Since we will consider only declarative statements,
the result of the entire computation will always be a truth value. Therefore if an
expression in syntactic category X has semantic type a, the type of the continuation
Cx will be (a, t). Comparing (4) with (6) , then, the rule of thumb is that to get the
type of a continuation, add a t.

(6) LooICAL
SYMBOL

TYPE DESCRIPTION

Cs <t,t> Sentence continuation

CNP <e,t> NP continuation

cyp « e,t>,t> VP continuation

cVt « e,<e,t» ,t> Transitive-verb continuation

In particular, note that the type of an NP continuation is <e,t>. But the basic (i .e . ,
uncontinuized) type of a VP is also <e,t>. According to (2), after all , a VP meaning
is a function from NP meanings to sentence meanings. In other words, a verb phrase
meaning is an NP continuation.

A continuized denotation is a function on continuations. I will indicate a
continuized denotation by underlining, so that VP is a continuized VP denotation.
For each syntactic category X with semantic type a in the uncontinuized grammar,
in the continuized grammar the corresponding continuized syntactic category X
will denote a function that takes a continuation of type Cx as its sole argument. It
will return whatever the continuation returns; since continuations always return truth
values, the semantic type of X will be «a, t) , t). Comparing (4) with (7), the rule of
thumb is that to get the semantic type of a continuized category, add two t's :

INTRODUCING CONTINUATIONS

(7) LOGICAL
SYMBOL

TYPE DESCRIPTION

S « t,t>,t> Continuized S
NP « e,t>,t> Continuized NP
VP « <e,t>,t>,t> Continuized VP
Vt « <e,<e,t» ,t>,t> Continuized transitive verb

With these preliminaries in place, here is one way to continuize the basic grammar
in (2):

(8) SYNTAX CoNTINUIZED SEMANTICS
a. S � NP VP 'Acs·VP('AP.NP('Ax.cs(P(x» »
b. NP � John 'AcNP·cNP(.i)
c . VP � Vt NP 'Acvp·NP('Ax.Vt('AR.cvp(R(x» »
d. NP � Mary 'AcNP·cNP(m)
e . VP � left 'Acwcvi('Ax.left(x»
f. Vt � saw 'AcwcVt('Ax'Ay.saw(y, x»

Since the type of a continuation can be deduced from the types of the other expres
sions, I will generally omit subscripts, writing 'c' instead of 'cv/ .

An example will show the sense in which the continuized grammar is
equivalent to the original uncontinuized grammar. First, note that the syntax of the
continuized grammar in (8) is identical to that of the original grammar in (2) .

(9) [S [NP [John]] [VP [left]]]
'Ac.VP('AP.NP('Ax.c(P(x» »
'Ac.VP('AP.« 'Ac.c(j» ('Ax.c(P(x» »)
'Ac.VP('AP.c(P(j»)
'Ac.« 'Ac.c('Ax.left(x»)('AP.c(P(j» »
'Ac.c(left(j»

Syntax
Rule (8a) .
Rule (8c) .
'A-conversion
Rule (8e) .
'A-conversion

According to the continuized grammar, John left denotes a function from sentence
continuations to a truth value. If we provide [John left] with the most trivial
continuation possible (the identity function, 'Ap.p), we get

(1 0) ('Ac.c(left(j»)('Ap.p) application to the trivial continuation
left(j) 'A-conversion

It is easy to verify for this simple grammar that when sentence denotations are given
a null continuation, the continuation grammar computes the same values as the
original basic grammar.

It is possible to generalize the continuization method illustrated above to
apply to an arbitrary compositional grammar, and to prove formally that the resulting

23

24 Chris Barker

continuized grammar is strongly equivalent to the uncontinuized grammar, modulo
application to the trivial continuation; see Barker (ms) for details.

Note in (7) that a continuized NP denotation is of type « e,t>,t>. This , of
course, is exactly the (extensional version of the) generalized quantifier perspective
on entity-denoting NPs like John as proposed in Montague's (1 970) PTQ or Barwise
and Cooper (1 9 8 1) .

This result bears emphasizing. The main insight in PTQ i s that quantifica
tional NPs denote functions on verb phrase meanings . In continuation terms, this is
equivalent to saying that quantificational NPs denote functions on their own continu
ations . But although Montague in effect continuized the category NP, he left all other
categories uncontinuized. As a result, Montague needed to introduce a completely
separate mechanism to account for quantifier scope, namely, Quantifying In (roughly
equivalent to Quantifier Raising, but in reverse) . The next two sections show that
continuizing across the board automatically accounts for quantifier scope displace
ment and quantifier scope ambiguity.

2. Quantification

So far all we have done is construct a continuized grammar that is equivalent to the
original basic grammar. We are now in a position to provide truth conditions for
some quantificational expressions .

(1 1) a.
b.

NP � everyone AC."iIx : c (x)

NP � someone Ac.3x : c (x)

The rule in (I 1 a) says that when used in a context in which C is its continuation, the
value returned by the NP everyone is the result of quantification over all the possible
individuals that might be fed to that continuation (ignoring animacy implications for
simplicity) . Similarly, the denotation of someone takes its continuation and wraps
an existential quantification around it.

Some accounts of quantification (e .g. , Heim and Kratzer (1998)) motivate
a rule of Quantifier Raising as a way to repair a type clash when a quantificational
NP occurs in direct object position. In the system here, however, the denotation of a
quantificational NP like everyone is the same type as the denotation of a continuized
NP in (8) , namely, a function from NP continuations to truth values (type « e,t>,t» .
As a result, quantificational NPs can occur in any syntactic NP position without
type clash:

INTRODUCING CONTINUATIONS

(12) John saw everyone.
[S [NPsu John] [VP [Vt saw] [NP DO everyone]]]
Ac.NPsu(A-.x·NP Do(Ay.Vt(AR(c((Ry)x» »)

Ac.NP su(A-.x·NP Do(Ay.c(saw(x, y» »

Ac.NP Do(Ay.c(saw(j, y»)

AC.((AC.V'X : C(X» (Ay.c(saw(j, y» »

AC.\:;Ix : c(saw(j, x»

Applying this denotation to the default null continuation, we get \:;Ix : saw(j, x),
which is a reasonable (extensional) denotation for the sentence John saw everyone.

Furthermore, sentences can freely contain zero, one, or more than one
quantificational expression.
(1 3) s

� NP VP
som�one A

Vt NP
I I

>.c.c(Vx : 3y:saw(y, x»

�
>.c.3y:c(y) >.c.Vx:c(>.y.saw(y , x»

�
>.c.c(>.x>.y.saw(y , x» >.c.Vx:c(x)

saw everyone
This calculation shows that despite the fact that the direct object takes wide scope
over subject, the analysis proceeds in a strictly compositional manner in which the
denotation of a complex expression depends only on the denotations of its immediate
subparts and the manner in which they are composed. There is no auxiliary storage,
and no use of information from 'outside' of an expression.

What about determiners? The rules in (1 1) treat everyone and someone as
lexical (syntactically unanalyzed) NPs. Most QNPs, of course, are syntactically com
plex, and contain a quantificational determiner. The logical extension of the continu
ation strategy would be to treat uncontinuized determiners as choice functions (type
« e, t>, e» , and quantificational determiners as functions on determiner continua
tions (type « « e, t>, e>, t>, t» . This is perfectly feasible (see Barker (ms» ; never
theless, for the sake of exposition, in this paper I will treat determiners syncategore
matically :

(14) SYNTAX
NP � Det N

SEMANTICS
Det(N)

This allows for (comparatively) familiar lexical entries for quantificational determin
ers along the following lines:

25

26 Chris Barker

(1 5) every ANAC.N(AP.VX : P (x) � c(x))
a, some ANAC.N(AP.3x : P(x)&c(x))
most ANAC.N(AP.most(P , c))
no ANAC.N(AP.-,3x : P (x)&c(x))

Here, � , &, and -, are the standard logical connectives defined over truth values,
and most is the familiar relation over sets used in, e.g . , Barwise and Cooper (1 98 1) .
A few examples will illustrate these definitions in action. Consider the grammar
consisting of the union of the rules in (8), (1 1) , (14) , and (1 5) . That grammar
generates the following analyses :

(1 6) a. John saw every man. Vx : man(x) � saw(j, x)

b. John saw most men. most(man, Ax.saw(j , x))

c. Every man saw a woman. 3y : woman (y)&
Vx : man(x) � saw(x, y)

Note that the interpretation in (1 6c) corresponds to inverse scope, i .e . , the direct
object takes scope over the subject. This shows that despite being an 'in situ'
analysis, nothing in the continuation mechanism itself biases towards linear scope or
inverse scope.

Thus continuations allow NPs to function as terms or as generalized quanti
fiers in any syntactic argument position. Furthermore, merely stating the truth con
ditions for quantificational NPs in terms of continuations automatically accounts for
scope displacement.

2. 1 . Bounding scope displacement.

In general, scope displacement can cross an unbounded number of syntactic levels .

(1 7) a. A raindrop fell on every car in the neighborhood.
b. A raindrop fell on the hood of every car in the neighborhood.
c. A raindrop fell on the top of the hood of every car in the neigh-

borhood.
Assuming that this series can be extended ad infinitum and that the most natural read
ing of these sentences requires that every take wide scope over a raindrop, the scope
of every must be displaced across an arbitrary number of syntactic embeddings. We
need only add the most straightforward continuation of the obvious nominal modifi
cation rule :

(1 8) N � N PP AC.PP(AQ.N(AP.C(AX.P(X)&Q(x))))
In other words, unbounded scope displacement follows automatically from the basic
mechanism without needing to postulate any additional type-shifting or composition
rules. (Incidentally, in standard Quantifier Raising theories, dealing with inverse

INTRODUCING CONTINUATIONS

linking examples such as (1 7) requires stipulations such as Proper Binding, which

requires that every trace left by QR must be bound in the final LF.)
However, the standard judgment is that QNPs cannot take scope outside

of their minimal tensed S . Just as in every theory of quantifier scope, something

special must be said about tensed Ss . One way to accomplish this here is to adj ust

the composition rules for the S node so as to disrupt the transmission of continuation

information between the subconstituents and the S :

(1 9) a . OLD

b. NEW

S --7 NP VP

S --7 NP VP

AC.VP(AP(NP(Ax.C (P(x)))))

AC.C(VP(AP(NP(Ax.P(x)))))

The difference is that the clause's continuation, c, is inside the scope of the subject

and of the verb phrase in the first version, but is outside in the second. As pointed out

by Shan (200 1) , Danvy and Filinski (1 990) call this technique a "reset" operation.

(20) a. A man thought everyone saw Mary.

b. :3y : man(y)&thought(y, Vx : saw(x, m))

Given the revision in (1 9b), all scopings of (20a) are logically equivalent to (20b) .

That is , every is not able to take scope outside of the embedded clause .

3. Scope ambiguity

The analysis so far provides reasonable interpretations for sentences involving

quantifiers, but it provides exactly one interpretation for each sentence. How does

relative scope ambiguity arise?

The answer comes from the fact that there can be more than one way to

continuize a given composition rule.

(2 1) a. S --7 NP VP Ac.C(VP(AP.NP(Ax.P(x))))

b. S --7 NP VP Ac.c(NP(Ax.VP(AP.P(x))))

The rule in (2 1 a) is just the (revised) S rule discussed immediately above. But

we may j ust as well have used (2 1b). The difference is in the order in which the

continuized NP meaning and the the continuized VP meaning contribute to the truth

conditions of the sentence. Substituting (2 1 b) in the example grammar will allow

the subject to take wide scope over the VP.

How shall we interpret this state of affairs ? Given the equation S = VP(NP) ,
we can either interpret the NP as providing the continuation for the VP ("What you
do with a VP is apply it as a functor to the subject") , or we can interpret the VP as

providing the continuation for the subject ("What you do with a subject is feed it as

an argument to a VP") . The result is the same, in the absence of quantification-but

in the presence of quantification, the two perspectives lead to different relative
scopings .

Computationally, the two rules in (2 1) correspond to different orders of

27

28 Chris B arker

execution at the level of the un-continuized grammar (see, e .g . , Meyer and Wand

1 98 5 :223) . However, because quantificational denotations exist only at the contin

uation level (by hypothesis) , it does not make sense to think of scope ambiguity as

literally corresponding to different order of execution; nevertheless , we can still rea

sonably use the term PRIORITY in its non-temporal sense. Let us say that (2 1 a) gives the

VP priority over the NP, so that quantificational elements in the VP take scope over

the NP. Similarly, (2 1b) gives the NP priority over the VP, so that the subject takes

wide scope.

Since both prioritizations are equally valid ways of providing access to

continuations, unless we say something extra, both are equally available for use.

Thus merely hypothesizing that quantificational elements manipulate continuations

automatically predicts not only scope displacement, but scope ambiguity as well.

3. 1 . Integrity

There will be distinct prioritizations of continuized rules for any syntactic rule that

invovles more than one subconstituent. In particular, in addition to the alternative
S � NP VP rule exhibited in (2 1) , there will be two prioritizations of the N � N
PP rule, and so on. This will give rise to a considerable number of interpretations

for given sentence that differ in quantifier scope possibilities ; however, the range of

expected scopings, though large, is significantly more constrained than under most

theories of quantification. The reason is that it is a theorem that the quantifier scope

possibilities allowed by continuations respects (surface) syntactic structure in a

certain way:

(22) The syntactic constituent integrity scoping constraint ('Integri

ty'): if there is a syntactic constituent that contains B and C but not

A, then A must take scope over both B and C or neither.

For instance, if we assume that the verb phrase in the following example constitutes

a syntactic constituent, the Integrity constraint predicts that there should be four

scopings, not the full factorial six predicted by most theories :

(23) Most spiders [put a foot on every lily pad] .

a. most > a > every

b. most > every > a

c . every > a > most

d. a > every > most

e. a > most > every (violates Integrity)

f. every > most > a (violates Integrity)

There is at least one other theory of quantifier scope that obeys Integrity, namely,

the version of combinatory categorial grammar discussed by Park (1 995, 1996) and

S teedman (2000) . (Interestingly, the Flexible Types analysis of Hendriks (1 988,

INTRODUCING CONTINUATIONS

1 993) does not respect Integrity.)

It is an empirical question whether the predictions of the Integrity hypothesis

are accurate; I discuss this topic in some detail in Barker (200 1) . I will not repeat

that discussion here, except to mention two factors that mitigate the empirical force

of the Integrity constraint, as well as one familiar situation in which Integrity makes

exactly the right prediction.

The first mitigating factor is that any scoping in which an indefinite takes

anything but narrowest scope (such as the scoping in (23e)) could be due to the inde

pendent mechanism that every theory must provide for handling long -distance indefi

nites (a cover term including what are known as specific indefinites, de re indefinites ,

wide-scope indefinites, etc .) . This means that potential counterexamples to Integrity

that crucially rely on indefinites taking wide scope are unlikely to be compelling.

Moreover, in Barker (ms), I propose to handle long-distance indefinites by

means of second-order continuations (cf. Danvy and Filinski (1990)) . Second-order

continuations become available when a continuized grammar is itself continuized.

The basic idea is that long-distance indefinites are to quantificational indefinites

as quantificational indefinites are to non-quantificational NPs. If second-order

continuations are available to a grammar, they potentially provide a mechanism for

describing non-Integral scopings, if necessary.

The second factor is that it cannot be taken for granted that there is only one

syntactic analysis of (23) . Park (1 995, 1 996) and Steedman (2000) provide all six

sets of truth conditions for (23) by providing in effect six distinct syntactic analyses .

Their alternative analyses arise through the interaction of the type-shifting operations

of functional composition and type lifting. One of the main points of my paper is

that type ambiguity is not required in order to give a basic account of quantification

and quantifier scope; but type ambiguity may still be necessary to account for other

phenomena. In particular, consider so-called non-constituent coordination:

(24) a. John ate [rice yesterday] and [beans today] .

b. Mary gave [a book to John] and [a record to Bill] .

The categorial grammar analyses of Dowty (1 988) and others account for such ex

amples by providing a way for the NP rice to compose with the adverbial yesterday
before combining with the transitive verb ate. If we need composition to account

for non-constituent coordination (as I suspect we do), then composition immediately
provides a mechanism for constructing the disputed scopings of (23) along the lines

explored by Park and Steedman.

In any case, it should be pointed out that Integrity makes excellent predic

tions in one domain where a number of other theories require awkward stipulations,

namely, quantification within and across NPs. May 1 985 and Larson (in unpublished

work described in Heim and Kratzer 1 998:233) conclude that NP is a scope island:
an NP embedded within an NP may move (via Quantifier Raising) only as far as its

containing NP.

29

30 Chris Barker

(25) a. Two politicians spy on [someone from every city] . (May)

b. *every city > two politicians > someone

May observes that the sentence (25a) does not have the scoping indicated in (25b) .
Preventing every city from escaping from the object NP prevents the subject from
intervening between the indefinite (with respect to scope) and the universal .

On the QR story, i t is fairly natural to decide that NP is a scope island, since
NP is generally an island for overt syntactic movement, and QR is supposed to obey
the same constraints that govern syntactic movement. However, doing so requires
type flexibility, since the raised NP is not the right type when adjoined within NP to
receive its normal interpretation (see Heim and Kratzer 1 998) .

On the continuation analysis, there is no need to say anything special in order
for facts like (25) to fall out, since it is just a special case of Integrity.

Of course, if scopings that seem to violate Integrity can arise through
functional composition, then whatever principles constrain such composition must
explain why composition cannot compose parts of NPs with constituents outside of
the NP. This is undoubtedly necessary, however, in order to prevent ungrammatical
instances of non-constituent coordination such as * John offered every [hot dish to
Mary] and [salty dish to Bill].

5. A payoff: generalized coordination without type ambiguity

The question naturally arises whether other linguistic elements manipulate continu
ations besides quantificational NPs . This section shows how continuations can pro
vide an account of generalized conjunction that is simpler than other accounts in
certain specific ways.

I assume, along with many others, that there are at least two kinds of
coordination, which I will call REDUCffiLE versus LOCAL:

(26) REoUCffiLE COORDINATION:
a. John and Mary drank a beer.

b. John drank a beer and Mary drank a beer.

The truth conditions of one legitimate reading of (26a) can be accurately expressed
by unpacking the coordination into conjoined clauses as in (26b)-in other words,
the meaning of the NP conjunction can be reduced to clausal conjunction.

(27) LoCAL COORDINATION:
a. John and Mary are a happy couple .

b. #John is a happy couple and Mary is a happy couple.

Reducing the conjunction in (27 a) to clausal coordination as in (27b), however, leads
to an ill-formed paraphrase.

The truth conditions for the most natural interpretation of (27a) depends on

INTRODUCING CONTINUATIONS

conjoining NP meanings. Thus at least some conjoined NPs have denotations that
involve complex individuals (mereological sums, perhaps as familiar from Link
(1 983» . This type of conjunction is ' local ' in the sense that the semantic function
expressing the conjunction operates on the semantic values of the conjuncts instead
of expressing the meaning of the conjunction as a function of clausal conjunction.

Partee and Rooth (1 983) , building on work of Gazdar, von Stechow, and
Keenan and Faltz, deal with reducible conjunction in three parts . First, they stipulate
that a CONJOINABLE TYPE is any type ending in t. Examples include sentences (type
t) , verb phrases and common nouns (type <e,t» , and quantificational NPs (type
« e,t>,t» , but not the lexical type assigned to proper names (type e) .

Second, they rely on a schema expressing the meaning of a coordinate
structure as a function of a denotation for the conjunction.

(28) SYNTAX
X --7 Xl and Xr

SEMANTICS
and(a.,�) (XI' Xr)

According to this schema, there is a potentially different conjunction meaning for
each conj oinable category. That is, the interpretation for coordinated sentences (X
= S) involves the function andt, the interpretation for coordinated verb phrases (X =
VP) involves the function and(e,t)' the interpretation for coordination noun phrases

(X = NP) involves the function and«e, t), t)' and so on.

Third, they relate the meaning of higher-order reducible conjunction to
lower-order denotations . Let L and R be meanings of type (a, �). Then Partee and
Rooth 1 983 have:

(29) and (a., [3/L, R) = Av.and[3(L(v), R (v»

where v is a variable over objects of type a. The base case says that andt is the
standard binary operator over truth values .

The claim of such an analysis i s that reducible and i s polysemous. The
schema in (29) is usually construed as a type-raising operator: we posit a single
lexical meaning for and, namely, andt, and generate an infinite number of other
denotations by repeated instantiation of (29).

Now consider one way of achieving an equivalent analysis of reducible
conjunction in a continuation grammar.

(30) SYNTAX
X --7 Xl and Xr

SEMANTICS
Ac.and/XzCc), X/c»

Recalling that a continuation is the (default) future of a computation, we can gloss
this rule as saying "Whatever you are planning to do with the value of the coordinate
structure, do it to the left conjunct, do it to the right conjunct, and conjoin the
resulting truth values".

Just as in (28) , (30) schematizes over a range of conjoinable syntactic cate
gories. However, there is no need to state a separate schema governing the function

3 1

32 Chris B arker

denoted by the conjunction-the semantic rule in (30) gives the desired result auto
matically. It mentions only the basic truth-value operator andt, and there is no need
to construct semantic operators that take arguments having complex types .

Furthermore, there is no need to stipulate what counts as a conjoinable type .
The result of applying any continuized denotation to a continuation (e.g . , "Xt(c)")
is guaranteed to be a truth value, by construction. In other words, the notion of
a conjoinable type is embodied in the structure of the continuation system. In the
present context, we can restate this as follows : the observation that conjoinable types
are those types that "end in t" is equivalent to the claim that reducible coordination
lives at the level of continuations.

In sum, Partee and Rooth 1 983 need a syntactic schema, a type-shifting rule,
and a notion of conjoinable type. In a continuized grammar, all that is needed is a
single schema.

Some concrete examples will illustrate the use of (30). Instantiating the
schema for syntactic categories S , YP, Yt, and NP, we have:

(3 1) a. John left and John slept . and(left (j), slept(j))

b. John left and slept. and(left(j), slept(j))

c. John saw and liked Mary. and(saw(j, m), liked(j, m))

d. John and Mary left. and(left(j), left(m))

These translations use the logical constant and for andr
Proper names can be freely coordinated with QNPs in any syntactic position.

To give one scoping of just one example:

(32) a.

b.

Tom met John and every woman.

and(met(t , j) , 'v'z(woman(z) -4 met(t, z)))

Reducible conjunction in a direct object gets unpacked so that (32a) comes out as
equivalent to Tom met John and Tom met every woman.

Generalized coordination is often cited as the most compelling, or at least the
most straightforward, motivation for recognizing type-shifting as an indispensable
technique. (There are plenty of other motivations for type-shifting, of course , such
as Partee (1 987), or the approach to non-constituent coordination described above.)
Hendriks (e .g . , 1 988 : 100) suggests that as long as we need type-shifting anyway for
describing generalized coordination, why not use type-shifting to handle quantifier
scope? This section turns this reasoning on its head: as long as we need continuations
to handle quantification, why not use them to provide a simple semantic treatment
of reducible coordination that does not depend on type ambiguity?

Perhaps even more interesting than the simplicity of the continuation treat
ment of reducible coordination, the continuation hypothesis provides insight into
why there should be two types of coordination in the first place. Local coordination
lives at the basic level that ignores the presence of continuations ; but as soon as we
allow denotations to manipulate continuations, it is quite natural to reanalyze a coor-

INTRODUCING CONTINUATIONS

dinating particle as operating at the level of continuations .

6. Conclusions

The continuation approach to quantification is most similar in methodological
outlook to Hendriks ' Flexible Types system. Both approaches respect syntactic
structure (Le. , they interpret overt syntactic structure directly without recourse to
invisible manipulations at LF) ; neither use any kind of storage mechanism; and both
are strictly compositional.

In the Flexible Types system, the value-raising schema and the argument-rais
ing schema in effect allow a predicate to climb up the type hierarchy as high as nec
essary in order to swallow as much of its computational future as its arguments need
to take scope over. Since scope can be displaced arbitrarily far, the result for Flexible
Types is that even simple lexical transitive verbs must be infinitely polysemous.

I have claimed that continuations do not rely on type-shifting. Yet there is
an unmistakable flavor of type-shifting about the whole continuation enterprise.
One way to say it is that instead of type-shifting expressions, we are type-shifting
composition rules. Perhaps an even better way to view it would be to say that it is the
entire grammar as a whole that has been shifted. I will make two points in response
to this thought. First, once a grammar has been shifted to its continuized version,
there is no need to keep any of the unshifted denotations ; typically type-shifting
analysis usually need both the shifted and the unshifted version of a meaning in
different situations. In other words, even if type-shifting is used to construct the
continuized grammar, once the grammar has been constructed, that grammar does
not depend in any way on type ambiguity.

Second, the proposal here is by no means the only example of type-shifting
a grammar as a whole. In the dynamic grammars of Heim, Kamp, Groenendijk and
Stokhof, among others, sentences no longer denote truth values, but update func
tions on contexts instead. In particular, Chierchia (1 995 : 8 1) presents his dynamic
logic in terms very much like what we are calling continuations (though he uses the
word 'continuation' in an informal sense different from the one here) . In Chierchia's
framework, sentence denotations are expressed by logical forms that contain a place
holder standing for the content of subsequent discourse : "Metaphorically speaking,
we add to [the interpretation of S] a hook onto which incoming information can be
hung". In fact, one leading motivation in Chierchia's case has to do with achieving
scope displacement, since incorporating the content of subsequent sentences into
the sentence under evaluation can allow existential quantifiers to bind pronouns in
the subsequent discourse. In any case, dynamic semantics are well-known and re
spectable cases of type-shifting the grammar as a whole. As a second example , Shan
(200 1) argues that the correspondence of an extensional grammar with its intensional
counterpart is a shift similar to continuization (more specifically, both transforms are
instances of monads) .

In summary, continuations provide a new and satisfying way of unifying sev-

3 3

34 Chris Barker

eral aspects of nominal quantification: merely stating the truth conditions of quantifi
cational expressions in terms of continuations not only dervies the generalized-<[uan
tifier conception of NP meaning as a special case of a more general mechanism, it
also automatically accounts for scope displacement and scope ambiguity. In addition,
continuations provide an analysis of reducible coordination that is significantly sim
pler than other accounts, and that provides an explanation for why there are two types
of coordination in the first place: local coordination lives at the basic compositional
level, and reducible coordination lives at the level of first�rder continuations.

Endnotes

"'Thanks to Mark Gawron, Ken Shan, Mark Steedman, and the SALT 1 1 audience
for comments .

References

Barker, Chris. 200 1 . Integrity; A syntactic constraint on quantifier scope ambiguity.
In Proceedings of WCCFL 20. Cascadilla Press.

Barker, Chris. ms. Continuations. UCSD manuscript.

Barwise, J. and Robin Cooper. 198 1 . Generalized Quantifiers in Natural Language,
Linguistics and Philosophy 4: 1 59-200.

Chierchia, Gennaro. 1995. Dynamics of Meaning, University of Chicago Press,
Chicago.

Danvy, Olivier, and A. Filinski . 1990. Abstracting control. In Proceedings of the
1990 ACM Conference on Lisp and Functional Programming. ACM Press,
New York. 15 1-160.

Danvy, Olivier, and Carolyn A. Talcott. 1998 . Introduction (to a special issue on
continuations). Higher-order and Symbolic Computation 11.2: 1 15-1 1 6.

Dowty, David. 1988 . Type Raising, Functional Composition, and Non-Constituent
Coordination. In Richard T. Oehrle, Emmon Bach, and Deidre Wheeler, eds .
Categorial Grammar and Natural Language Structures. Kluwer, Dordrecht.
1 53-198.

Heim, Irene and Angelika Kratzer. 1998 . Semantics in Generative Grammar,
Blackwell, Oxford.

Hendriks, Herman. 1988 . Type Change in Semantics : the Scope of Quantification
and Coordination, in E. Klein and J. van Benthem, eds . , Categories, Polymor
phism and Unification, ITLI, Amsterdam, 96-1 19 .

Hendriks, Herman. 1993 . Studied Flexibility, ILLC Dissertation Series, Ams
terdam.

Link, G. 1983 . The logical analysis of plurals and mass terms, a lattice-theoretical
approach. In R. Bauerle et al . , eds . Meaning, Use, and Interpretation of

INTRODUCING CONTINUATIONS

Language, Berlin, 302-323 .

May, Robert. 1 985 . Logical Fonn: Its Structure and Derivation, MIT Press, Cam
bridge, Massachusetts.

Meyer, Albert R. and Mitchell Wand. 1985 . Continuation semantics in type lambda
calculi (summary) . In Rohit Parikh, ed. , Logics of Programs-Proceedings,
Brooklyn: Springer-Verlag:2 19-224.

Montague, R. 1 970. The Proper Treatment of Quantification in English, in J . Hin
tikka, 1. Moravcsik, and P. Suppes, eds . , Approaches to Natural Language: Pro
ceedings of the 1970 Stanford Workshop on Grammar and Semantics, Reidel,
Dordrecht, 22 1-42. Also in R. Thomason, ed. , 1 974. Fonnal Philosophy: Se
lected Papers of Richard Montague, 247-270 .

Park, Jong Cheol. 1 995. Quantifier Scope and Constituency. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL).
Cambridge, MA, 205-2 12 .

Park, J ong Cheol. 1 996. Quantifier Scope, Lexical Semantics, and Surface Structure
Constituency. IRCS Report 96-28.

Partee, B arbara Hall . 1 987. Noun Phrase Interpretation and Type-Shifting Prin
ciples . In Groenendijk, J . , D. de Jongh, and M. Stokhof, eds . , Studies in Dis
course Representation Theory and the Theory of Generalized Quantifiers,
Foris, 1 1 5-143 .

Partee, Barbara Hall and Mats Rooth. 1983 . Generalized conjunction and type
ambiguity. In Rainer Bauerle, Christoph Schwarze, and Arnim von Stechow,
eds . , Meaning, Use, and Interpretation of Language, 36 1-383 .

Reynolds, John C. 1 993 . The Discoveries of Continuations. Lisp and Symbolic
2 Computation 6:233-247 .

Shan, Chung-Chieh. 200 1 . Monads for natural language semantics . In K. Striegnitz,
ed. Proceedings of the ESSUI-2001 Student Session, 1 3th European Summer
School in Logic, Language and Information, 285-298 .

Steedman, Mark. 2000. The syntactic process. MIT Press .

35

