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Computation Tree logic Vs. LTL

LTL implicitly quantifies universallyover paths.

〈K M ,s〉 |= φ iff for every pathπ starting ats 〈K M ,π〉 |= φ

Properties that assert the existenceof a path cannot be
expressed. In particular, properties which mix existential
and universal path quantifiers cannot be expressed.

The Computation Tree Logic, CTL, solves these
problems!
• CTL explicitly introduces path quantifiers!
• CTL is the natural temporal logic interpreted over

Branching Time Structures.
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CTL at a glance

CTL is evaluated over branching-time structures
(Trees).

CTL explicitly introduces path quantifiers:
All Paths: �P

Exists a Path: ♦P .

Every temporal operator ( ,♦, k, U ) preceded by a
path quantifier (�P or ♦P ).

Universal modalities: �P ♦, �P , �P k, �P U
The temporal formula is true in all the paths starting in
the current state.

Existential modalities: ♦P ♦,♦P ,♦P k,♦P U

The temporal formula is true in some path starting in
the current state.
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CTL: Syntax

Countable set Σ of atomic propositions: p,q, . . . the set FORM

of formulas is:

ϕ,ψ → p | ⊤ | ⊥ | ¬ϕ | ϕ∧ψ | ϕ∨ψ |

�P
kϕ | �P ϕ | �P ♦ϕ | �P (ϕU ψ)

♦P kϕ |♦P ϕ |♦P ♦ϕ |♦P (ϕU ψ)
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CTL: Semantics

We interpret our CTL temporal formulas over Kripke
Models linearized as trees (e.g. �P ♦done).

done!done

done

done

done done done

done

!done

!done

!done

!done

Universal modalities (�P ♦, �P , �P k, �P U ): the
temporal formula is true in all the paths starting in the
current state.

Existential modalities (♦P ♦,♦P ,♦P k,♦P U ): the
temporal formula is true in some path starting in the
current state.
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CTL: Semantics (Cont.)

Let Σ be a set of atomic propositions. We interpret our CTL
temporal formulas over Kripke Models:

K M = 〈S, I ,R,Σ,L〉

The semantics of a temporal formula is provided by the
satisfactionrelation:

|= : (K M ×S×FORM) →{true, false}
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CTL Semantics: The Propositional Aspect

We start by defining when an atomic proposition is true at a
state/time “si”

K M , si |= p iff p∈ L(si) (for p∈ Σ)

The semantics for the classical operators is as expected:
K M , si |= ¬ϕ iff K M , si 6|= ϕ

K M , si |= ϕ∧ψ iff K M , si |= ϕ andK M , si |= ψ

K M , si |= ϕ∨ψ iff K M , si |= ϕ or K M , si |= ψ

K M , si |= ϕ ⇒ ψ iff if K M , si |= ϕ thenK M , si |= ψ

K M , si |= ⊤

K M , si 6|= ⊥
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CTL Semantics: The Temporal Aspect
Temporal operators have the following semantics where
π=(si,si+1, . . .) is a generic path outgoing from state si inK M .

K M ,si |= �P
jϕ iff ∀π = (si ,si+1, . . .) K M ,si+1 |= ϕ

K M ,si |=♦P jϕ iff ∃π = (si ,si+1, . . .) K M ,si+1 |= ϕ

K M ,si |= �P ϕ iff ∀π = (si ,si+1, . . .) ∀ j ≥ i.K M ,sj |= ϕ

K M ,si |=♦P ϕ iff ∃π = (si ,si+1, . . .) ∀ j ≥ i.K M ,sj |= ϕ

K M ,si |= �P ♦ϕ iff ∀π = (si ,si+1, . . .) ∃ j ≥ i.K M ,sj |= ϕ

K M ,si |=♦P ♦ϕ iff ∃π = (si ,si+1, . . .) ∃ j ≥ i.K M ,sj |= ϕ

K M ,si |= �P (ϕU ψ) iff ∀π = (si ,si+1, . . .) ∃ j ≥ i.K M ,sj |= ψ and

∀i ≤ k < j : M,sk |= ϕ

K M ,si |=♦P (ϕU ψ) iff ∃π = (si ,si+1, . . .) ∃ j ≥ i.K M ,sj |= ψ and

∀i ≤ k < j : K M ,sk |= ϕ
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CTL Semantics: Intuitions

CTL is given by the standard boolean logic enhanced with
temporal operators.

⊲ “Necessarily Next”. �P kϕ is true in st iff ϕ is true in every
successor state st+1

⊲ “Possibly Next”. ♦P kϕ is true in st iff ϕ is true in one
successor state st+1

⊲ “Necessarily in the future” (or “Inevitably”). �P ♦ϕ is true in st

iff ϕ is inevitably true in some st ′ with t ′ ≥ t

⊲ “Possibly in the future” (or “Possibly”). ♦P ♦ϕ is true in st iff ϕ
may be true in some st ′ with t ′ ≥ t
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CTL Semantics: Intuitions (Cont.)

⊲ “Globally” (or “always”). �P ϕ is true in st iff ϕ is true in all
st ′ with t ′ ≥ t

⊲ “Possibly henceforth”. ♦P ϕ is true in st iff ϕ is possibly true
henceforth

⊲ “Necessarily Until”. �P (ϕU ψ) is true in st iff necessarily ϕ
holds until ψ holds.

⊲ “Possibly Until”. ♦P (ϕU ψ) is true in st iff possibly ϕ holds
until ψ holds.
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CTL Alternative Notation

Alternative notations are used for temporal operators.

♦P  E there Exists a path
�P  A in All paths
♦  F sometime in the Future

 G Globally in the future
k
 X neXtime
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CTL Semantics: Intuitions (Cont.)

Pfinally Pglobally Pnext P until q

PEF PEX P U q]E[PEG

AFP AXP P U qA[ ]AGP
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A Complete Set of CTL Operators

All CTL operators can be expressed via: ♦P k,♦P ,♦P U

�P
k≡ ¬♦P k¬ϕ

�P ♦ϕ ≡ ¬♦P ¬ϕ

♦P ♦ϕ ≡♦P (⊤U ϕ)

�P ϕ ≡ ¬♦P ♦¬ϕ ≡ ¬♦P (⊤U ¬ϕ)

�P (ϕU ψ) ≡ ¬♦P ¬ψ∧¬♦P (¬ψU (¬ϕ∧¬ψ))
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Safety Properties

Safety:

“something bad will not happen”

Typical examples:

�P ¬(reactor_temp> 1000)

�P ¬(one_way∧ �P kother_way)

�P ¬((x = 0)∧ �P k
�P

k
�P

k(y = z/x))

and so on.....

Usually: �P ¬....
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Liveness Properties

Liveness:

“something good will happen”

Typical examples:

�P ♦rich

�P ♦(x > 5)

�P (start⇒ �P ♦terminate)

and so on.....

Usually: �P ♦ . . .
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Fairness Properties

Often only really useful when scheduling processes,
responding to messages, etc.

Fairness:

“something is successful/allocated infinitely often”

Typical example:

�P (�P ♦enabled)

Usually: �P �P ♦ . . .
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The CTL Model Checking Problem

The CTL Model Checking Problem is formulated as:

K M |= φ

Check if K M ,s0 |= φ, for every initial state, s0, of the Kripke
structure K M .
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Example 1: Mutual Exclusion (Safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= �P ¬(C1∧C2) ?

Alessandro Artale (FM – First Semester – 2007/2008) – p. 22/37



Example 1: Mutual Exclusion (Safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= �P ¬(C1∧C2) ?

YES: There is no reachable state in which (C1∧C2) holds!
(Same as the ¬(C1∧C2) in LTL.)
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Example 2: Liveness
N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= �P (T1 ⇒ �P ♦C1) ?
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Example 2: Liveness
N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= �P (T1 ⇒ �P ♦C1) ?

YES: every path starting from each state where T1 holds
passes through a state where C1 holds.
(Same as (T1 ⇒♦C1) in LTL)
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Example 3: Fairness
N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= �P �P ♦C1 ?
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Example 3: Fairness
N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= �P �P ♦C1 ?

NO: e.g., in the initial state, there is the blue cyclic path in
which C1 never holds! (Same as ♦C1 in LTL)
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Example 4: Non-Blocking

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= �P (N1 ⇒♦P ♦T1) ?
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Example 4: Non-Blocking

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= �P (N1 ⇒♦P ♦T1) ?

YES: from each state where N1 holds there is a path leading
to a state where T1 holds. (No corresponding LTL formulas)
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LTL Vs. CTL: Expressiveness

⊲ Many CTL formulas cannot be expressed in LTL
(e.g., those containing paths quantified existentially)
E.g., �P (N1 ⇒♦P ♦T1)

⊲ Many LTL formulas cannot be expressed in CTL
E.g., ♦T1 ⇒ ♦C1 (Strong Fairness in LTL)
i.e, formulas that select a rangeof paths with a property
(♦p⇒♦q Vs. �P (p⇒ �P ♦q))

⊲ Some formluas can be expressed both in LTL and in CTL
(typically LTL formulas with operators of nesting depth 1)
E.g., ¬(C1∧C2), ♦C1, (T1 ⇒♦C1), ♦C1
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LTL Vs. CTL: Expressiveness (Cont.)

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the
application and the personal preferences.

CTLLTL
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The Computation Tree Logic CTL*

CTL* is a logic that combines the expressive power of
LTL and CTL.

Temporal operators can be applied without any
constraints.

• �P ( kϕ∨ k kϕ).
Along all paths, ϕ is true in the next state or the next two
steps.

• ♦P ( ♦ϕ).
There is a path along which ϕ is infinitely often true.
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CTL*: Syntax

Countable set Σ of atomic propositions: p,q, . . . we
distinguish between States Formulas(evaluated on states):

ϕ,ψ → p | ⊤ | ⊥ | ¬ϕ | ϕ∧ψ | ϕ∨ψ |

�P α |♦P α

and Path Formulas(evaluated on paths):

α,β → ϕ |

¬α | α∧β | α∨β |
kα | α |♦α | (αU β)

The set of CTL* formulas FORM is the set of state formulas.
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CTL* Semantics: State Formulas

We start by defining when an atomic proposition is true at a
state “s0”

K M , s0 |= p iff p∈ L(s0) (for p∈ Σ)

The semantics for State Formulasis the following where
π = (s0,s1, . . .) is a generic path outgoing from state s0:

K M , s0 |= ¬ϕ iff K M , s0 6|= ϕ

K M , s0 |= ϕ∧ψ iff K M , s0 |= ϕ andK M , s0 |= ψ

K M , s0 |= ϕ∨ψ iff K M , s0 |= ϕ or K M , s0 |= ψ

K M , s0 |=♦P α iff ∃π = (s0,s1, . . .)such that K M ,π |= α

K M , s0 |= �P α iff ∀π = (s0,s1, . . .) then K M ,π |= α
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CTL* Semantics: Path Formulas

The semantics for Path Formulasis the following where
π = (s0,s1, . . .) is a generic path outgoing from state s0 and πi

denotes the suffix path (si,si+1, . . .):
K M , π |= ϕ iff K M , s0 |= ϕ

K M , π |= ¬α iff K M , π 6|= α

K M , π |= α∧β iff K M , π |= α andK M , π |= β

K M , π |= α∨β iff K M , π |= α or K M , π |= β

K M , π |=♦α iff ∃i ≥ 0such that K M ,πi |= α

K M , π |= α iff ∀i ≥ 0then K M ,πi |= α

K M , π |= kα iff K M ,π1 |= α

K M , π |= αU β iff ∃i ≥ 0such that K M ,πi |= β and
∀ j.(0≤ j ≤ i) then K M ,π j |= α
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CTLs Vs LTL Vs CTL: Expressiveness

CTL* subsumes both CTL and LTL

⊲ ϕ in CTL =⇒ ϕ in CTL* (e.g., �P (N1 ⇒♦P ♦T1))
⊲ ϕ in LTL =⇒ �P ϕ in CTL* (e.g., �P ( ♦T1 ⇒ ♦C1))
⊲ LTL ∪ CTL ⊂ CTL* (e.g., ♦P ( ♦p⇒ ♦q))

CTLLTL

CTL*
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CTL* Vs LTL Vs CTL: Complexity

The following Table shows the Computational Complexity of
checking Satisbiability

Logic Complexity

LTL PSpace-Complete

CTL ExpTime-Complete

CTL* 2ExpTime-Complete
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CTL* Vs LTL Vs CTL: Complexity (Cont.)

The following Table shows the Computational Complexity of
Model Checking (M.C.)

• Since M.C. has 2 inputs – the model, M , and the
formula, ϕ – we give two complexity measures.

Logic Complexity w.r.t. | ϕ | Complexity w.r.t. |M |

LTL PSpace-Complete P (linear)

CTL P-Complete P (linear)

CTL* PSpace-Complete P (linear)
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