FORMAL METHODS
LECTURE |V: COMPUTATION TREE LOGIC (CTL)

Alessandro Artale

Faculty of Computer Science — Free University of Bolzano

artale@nf.unibz.it http://ww. inf.unibz.it/~artal e/

Some material (text, figures) displayed in these slidesustesy of:
M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M siRare, M. Roveri, R.Sebastiani.

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL*

s LTL implicitly guantifies universallyover paths.

(xM ,s) = @ iff for every pathrtstarting ats (XM , 1) =@

» Properties that assert the existencef a path cannot be
expressed. In particular, properties which mix existential
and universal path quantifiers cannot be expressed.

s The Computation Tree Logic, CTL, solves these
problems!
* CTL explicitly introduces path quantifiers

* CTL is the natural temporal logic interpreted over
Branching Time Structures.

essanaro Artale — FIrst Semester — —D.

o CTL is evaluated over branching-time structures
(Trees).

o CTL explicitly introduces path quantifiers

All Paths: [
Exists a Path: .

» Every temporal operator (<, O, u) preceded by a
path quantifier (& or).

s Universal modalities: @<, @ [], m O, ® u
The temporal formula is true in all the paths starting In
the current state.

s Existential modalities: ® <. [1, O, u

The temporal formula is true in some path starting in
the current state.

o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL*

Countable set 2 of atomic propositionsp,g,... the set FORM
of formulas Is:

o0 — plT|LI-¢[oAW[OVU]

B O E o200 | B (duy)
QOO0 ©[1p| 00| @ (duw)

s We interpret our CTL temporal formulas over Kripke
Models linearized as trees (e.g. [<>done.

88
==
o PN

s Universal modalities (B<>,® [], O, ® u): the
temporal formula is true in all the paths starting in the
current state.

s Existential modalities (&<, [], O, u): the

temporal formula is true in some path starting in the
current state.

Let 2 be a set of atomic propositions. We interpret our CTL
temporal formulas over Kripke Models:

xM = (SI,RE,L)

The semantics of a temporal formula is provided by the
satisfactionrelation:

= (XM x Sx FORM) — {true,false}

We start by defining when an atomic proposition is true at a
state/time “s”

pelL(s)

(for pe 2)

The semantics for the classical operators is as expected:
KM ,S 7= ¢
KM,SEPandxM ,s =Y
KM,SEPOrKxM,s =Y

KM,s5 =p Iff
KM ,S =0 | ff
KM, SEAY Iff
KM,s=Eovy iff
KM, sSEG=U0 Iff
KM,SFT

if KM, s

— ¢ thenxa,s =Y

Temporal operators have the following semantics where
=(S,S.1,.-.) IS a generic path outgoing from state sinx o .

xM,s5 EBOP iff V= (s,S¢1,...) XM ,S11F¢
x5 =00 iff IM=(s,5:1,...) KM 51k 0
KM ,s =EF| Iff (S,S41;---) V]>1L.KM,sji=0d
xal,s =@ o iff (S,S11,.-.) Vi >i.K90,5 = ¢

()

()

()

KM ,S = @<>¢ Iff S,S+1,...) 3] >LKM,Sj =
K91 .5 = @O0 Iff S,S+41,--.) 3] > 0L.KXM,Sj =
KM ,s =R (opup) iff S,S+1,--.

:lﬁl:l

] > 1.KM ,Sj =Y and

Vi<k<] :M,s |
KM S |:<F>(¢uL|J) iff In=(s,s41,...) I >i.xM,sj =Y and
Vi<k<] :&xM,sx=0

CTL is given by the standard boolean logic enhanced with
temporal operators.

> “Necessarily Next”. B (O¢ is true in s iff ¢ is true in every
successor state s 1

> “Possibly Next”. & Od is true in s iff ¢ is true in one
successor state S+1

> “Necessarily in the future” (or “Inevitably™). ®<>¢ IS true In §
Iff ¢ is inevitably true in some s witht’ >t

> “Possibly in the future” (or “Possibly”). ><{>¢ is true in s iff ¢
may be true in some s with t’ >t

> “Globally” (or “always”). ® | ¢ Is true in s Iff ¢ Is true in all

> “Possibly henceforth”. ¢ [_]¢ is true in s iff ¢ is possibly true
henceforth

> “Necessarily Until”. @ (¢ u @) is true in & iff necessarily ¢
holds until Y holds.

> “Possibly Until”. <> (¢ @) is true in s iff possibly ¢ holds
until Y holds.

Alternative notations are used for temporal operators.

there Exists a path

In All paths

sometime in the Future
Globally in the future
neXtime

%
B
%
O

X @ T > M

A

finally p globally p next p p until g

LY Wi

Al pUQq]

B B A A

E[pUCQ]

All CTL operators can be expressed via: & O, [], «

s B0 =- OO0

s BOO=-0 [0

s @OO=0(Tud)

s @ [Jp=-QO0=-F(Tu¢)

s B(puP)=- LI WA~ (W (—pA-))

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

s CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL*

Safety:
“something bad will not happen”

Typical examples:

[| |—(reactor_temp> 1000

® | |-(one wayA B (Oother way)

B J-(x=0AEB OB OB O(y=12/X))

and so on.....

Usually: B[|—....

%

Liveness:
“something good will happen”

Typical examples:

@ <>rich

A (x> 5)
A [(start= B {terminate
and so on.....

Usually: @<>...

Often only really useful when scheduling processes,
responding to messages, etc.

Fairness:
“something Is successful/allocated infinitely often”

Typical example:
3 [(m<>enabled

Usually: @ [E<>. ..

%

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL*

The CTL Model Checking Problem is formulated as:

KM =@

Check iIf x ,59 = @, for every initial state, 5, of the Kripke
structure K .

N = noncritical, T =trying, C= critical\A N1, N2 User 1 User 2
urn=

N = noncritical, T =trying, C= critical\A N1, N2 User 1 User 2

KM = [F —I(Cl/\Cz) ?

YES: There is no reachable state in which (C; ACy) holds!
(Same as the | |-(Ci;ACy) in LTL.)

N = noncritical,

N = noncritical, T =trying, C = critical N1 N2 User 1 User 2

(Tl — [P] <>C1)

YES: every path starting from each state where T; holds
passes through a state where C; holds.

Same as Ty = <)C4q) In LTL

N =noncritical, T=trying, C= critical* N1, N2 User1 User 2
urn=

N =noncritical, T=trying, C= critical* N1, N2 User1 User 2

xu =@ 18HC ?

NO: e.g., In the initial state, there is the blue cyclic path in
which C; never holds! (Same as <>C1 In LTL)

N = noncritical, T =trying, C= critical\A N1, N2 User 1 User 2

Aﬁ

N = noncritical, T =trying, C= critical\A N1, N2 User 1 User 2

A

Ny = @O T) S

YES: from each state where N; holds there is a path leading
to a state where T; holds. (No corresponding LTL formulas)

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL*

> Many CTL formulas cannot be expressed in LTL
(e.qg., those containing paths gquantified existentially)

E.g., [

> Many LTL formu

(Ny = ©<Th)

E.g.,

(Op=<qVs. E

as cannot be expressed in CTL

OT = [¢, (Strong Fairness in LTL)
l.e, formulas that select a rangeof paths with a property

(p= B<>Q))

> Some formluas can be expressed both in LTL and in CTL
(typically LTL formulas with operators of nesting depth 1)

E.g.,

~(C1AGy), C,

(Tl — <>C1),

OCy

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the
application and the personal preferences.

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL*

o CTL*is alogic that combines the expressive power of
LTL and CTL.

o Temporal operators can be applied without any
constraints.

« B (OoVvOOD).

Along all paths, ¢ is true in the next state or the next two
steps.

- & (LIO).

There Is a path along which ¢ is infinitely often true.

Countable set 2 of atomic propositions: p,q,... we
distinguish between States Formulagevaluated on states):

oY — plT[L][=0|oAW|OVY
Fa|a

and Path Formulagevaluated on paths):

ap — ¢
- |aABlaVvp]

Oa | [a | Qo (aup)

The set of CTL* formulas FORM Is the set of state formulas.

We start by defining when an atomic proposition is true at a
state sy’

KM, SoFEp iff pel(s) (forpez)

The semantics for State Formulass the following where
m=(%,S1,...) IS @ generic path outgoing from state s:

KM, SF—¢ Iff XM, 59%F0¢

KM, SEOAY iff XM, so=¢andxa , 5=

KM, =0V iff xM , ss=dorxmM,so=Y

KM, E=a iff Im=(so,S.,...)such that o , T a

KM, ERBAa iff V= (5,S,...)then X , TTE=

The semantics for Path Formulass the following where |
= (%,S1,...) IS @ generic path outgoing from state 55 and 1t
denotes the suffix path (s,S.1,...):

KM, = ¢ Iff xM,s9=0
KM , U= 0 Iff xM,MEQ

KM, m=aApB Iff xv , m=aandxm , T=p

KM, m=aVvp Iff xv m=aorxm,m=
xo,m=<>a iff i >O0suchthat x¢ 1 =«
xm ,Ti= | Ja iff Vi>O0then x¢ .1t =a
xM . . mE= Oa iff xv T E=a

KM, mEauP iff Ji>O0suchthat x4, 7 =B and
Vi.(0< | <i)then xa , 10 =«

CTL* subsumes both CTL and LTL

> @INCTL=— ¢ InCTL* (e.qg., [@

> LTL U CTL C CTL* (e.g., & (

Op= [1O0)

CTL*

@

(Ny = @OT))
> ¢inLTL= B¢ inCTL* (e.g., B ([JOT1 =

$Ch))

The following Table shows the Computational Complexity of
checking Satisbiabllity

Logic Complexity

LTL PSpace-Complete
CTL ExpTime-Complete
CTL* 2ExpTime-Complete

The following Table shows the Computational Complexity of
Model Checking (M.C.)

» Since M.C. has 2 inputs — the model, ar, and the
formula, ¢ — we give two complexity measures.

Logic Complexity w.rit. |¢| Complexity w.r.t. | ¢ |

LTL PSpace-Complete P (linear)
CTL P-Complete P (linear)
CTL* PSpace-Complete P (linear)

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL*

	Summary of Lecture IV
	Computation Tree logic Vs. LTL
	CTL at a glance
	Summary
	CTL : Syntax
	CTL : Semantics
	CTL : Semantics (Cont.)
	CTL Semantics: The Propositional Aspect
	CTL Semantics: The Temporal Aspect
	CTL Semantics: Intuitions
	CTL Semantics: Intuitions (Cont.)
	CTL Alternative Notation
	CTL Semantics: Intuitions (Cont.)
	A Complete Set of CTL Operators
	Summary
	Safety Properties
	Liveness Properties
	Fairness Properties
	Summary
	The CTL Model Checking Problem
	Example 1: Mutual Exclusion (Safety)
	Example 1: Mutual Exclusion (Safety)

	Example 2: Liveness
	Example 2: Liveness

	Example 3: Fairness
	Example 3: Fairness

	Example 4: Non-Blocking
	Example 4: Non-Blocking

	Summary
	LTL Vs. CTL : Expressiveness
	LTL Vs. CTL : Expressiveness (Cont.)
	Summary
	The Computation Tree Logic CTLs
	CTLs : Syntax
	CTLs Semantics: State Formulas
	CTLs Semantics: Path Formulas
	\CTLs Vs LTL Vs CTL : Expressiveness
	CTLs Vs LTL Vs CTL : Complexity
	CTLs Vs LTL Vs CTL : Complexity (Cont.)
	Summary of Lecture IV

