Computational Semantics
Day 3: Lambda calculus
and the composition of meanings

Jan van Eijck! & Christina Unger?

1CWI, Amsterdam, and UiL-OTS, Utrecht, The Netherlands
2CITEC, Bielefeld University, Germany

ESSLLI 2011, Ljubljana

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

1/73

Outline

Outline

Lambda calculus
Formal definition and properties

Typed lambda calculus
Typed meanings for natural language
Composing meanings
Quantifier denotations

Interpreting our grammar and implementation

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

2/73

Outline

Lambda calculus

Lambdas changed my life.

(Barbara H. Partee)

All you need is lambda.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

3/73

Outline

History

In 1936, Turing and Church independently introduced two equivalent
models of computation:

Alan Turing: Turing Machine

A function is computable if a sequence of
instructions can be specified and then
carried out by a simple abstract
computational device.

Alonzo Church: Lambda Calculus
Every computable function is a function
that is definable in the lambda calculus.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 4 /73

Outline

Connection to programming languages

Imperative programming languages are based on the way a Turing
machine is instructed.

Functional programming languages are based on the lambda
calculus.

In fact, the lambda calculus is the smallest universal programming
language of the world (universal, because any computable function can be
expressed and evaluated).

Expressions correspond to programs.

The reduction of an expression corresponds to program execution.

In fact, it is the core of functional programming languages, which are
basically executable (typed) lambda calculi extended with constants,
datatypes, input/output, etc.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 5/73

Outline

Lambda calculus

The lambda calculus is a formal system for defining and investigating
functions.

Two basic concept:

function abstraction for representing functions, using a
variable-binding operator A

function application, corresponding to substitution of bound variables

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 6 /73

Outline Formal definition and properties

Formal definition and properties

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 7/73

Outline Formal definition and properties

Lambda calculus: Formal definition

Variables v and expressions E are defined as follows:

vi=x|v’

E:=v|A.E|(EE)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

8/ 173

Outline Formal definition and properties

Variables

vi=x|v’

E:=v|Av.E|(EE)

For our purposes, we write variables as lower case letters x,y, z, . . .,
possibly with indices.

Haskell: Variables (including function names) begin with a lower case
letter.

x, x°, x1

variable, newVAR, my_variable

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

9/73

Outline Formal definition and properties

Function abstraction

vi=x|v’

E:=v|A.E|(EE)

Av.E represents a function, where v is the variable abstracted over (bound
by the operator \), and E is the body of the function.

Examples: Ax.x, Ax.Ay.x
Haskell: Function abstraction is written as \ v -> E.

\ x > x

Vx> Ny ->x
or shorter: \ x y -> x

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 10 / 73

Outline Formal definition and properties

Function application

vi=x|v’

E:=v|A.E|(EE)

Function application represents applying an expression to another
expression, e.g. a function to an argument.

Example: (Ax.x y)

Haskell: Function application is written as E E.

ANx—>x)y
\Nxy->%x z

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

11/ 73

Outline Formal definition and properties

Reducing expressions

Function application expressions can be reduced to simpler expressions.

This corresponds to substitution of bound variables.

Reduction rule (called beta reduction):

()\V.El Ez) > E [V = E2]

Where E; [v := E;] denotes the substitution of E;
for all free occurrences of v in E;.

Example:

(M.(xy) Az.z) >

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

12 /73

Outline Formal definition and properties

Reducing expressions

Function application expressions can be reduced to simpler expressions.

This corresponds to substitution of bound variables.
Reduction rule (called beta reduction):
()\V.El Ez) > E [V = E2]

Where E; [v := E;] denotes the substitution of E;
for all free occurrences of v in E;.

Example:

(M.(xy) Az.z) > (A\z.z y) >

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

12 /73

Outline Formal definition and properties

Reducing expressions

Function application expressions can be reduced to simpler expressions.

This corresponds to substitution of bound variables.
Reduction rule (called beta reduction):
()\V.El Ez) > E [V = E2]

Where E; [v := E;] denotes the substitution of E;
for all free occurrences of v in E;.

Example:
(M.(xy) Az.z) > (A\z.z y) >y

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

12 /73

Outline Formal definition and properties

Free and bound variables

An occurrence of the variable v in the expression E is bound if it is in the
scope of a lambda prefix Av.

Example: \y.((Ax.x y) x)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 13 /73

Outline Formal definition and properties

Free and bound variables

An occurrence of the variable v in the expression E is bound if it is in the
scope of a lambda prefix Av.

Example: \y.((Ax.x y) x)

Note: When substituting expressions, we have to make sure that no variables get
accidentally captured.

(AxAy.(y x) y)

This can be ensured by variable renaming.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 13 /73

Outline Formal definition and properties

Observation

Reductions need not come to an end.

(Mx.(x x) Ax.(x x))
(Ax.((x x) x) Ax.((x x) x))

Jan van Eijck & Christina Unger Computational Semantics

ESSLLI 2011

14 /73

Outline Formal definition and properties

Confluence

The result of beta reduction is independent from the order of reduction,
i.e. if an expression can be evaluated in two different ways and both ways

terminate, then both ways will yield the same result (Church-Rosser
theorem).

(W.(y x) (Mxx 2))

Note: The reduction order does, however, play a role for efficiency and can
influence whether a reduction terminates or not.

(Az.y (Ax.(x x) Ax.(x x)))

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 15 / 73

Outline Formal definition and properties

Conventions

Applications associate to the left; thus, when applying a function to a
number of arguments, we can write f x y z instead of (((f x) y) z).

The body of a lambda abstraction (the part after the dot) extends as
far to the right as possible. l.e., Ax.E; E; means Ax.(E; Ep), and not
(\x.E1) B

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 16 / 73

Outline Formal definition and properties

Adding function constants

Lambda calculus as we saw it is already enough to define natural numbers
and arithmetic operations. We can abbreviate the corresponding
expressions by adding constants to the language:

1,2,3. .. for natural numbers
+ and * for addition and multiplication

Analogously, we can add constants a, b, ¢ for entities, wizard for unary
functions, admire for binary functions, and so on.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 17 / 73

Outline Formal definition and properties

Observation

We can build expressions that do not make much sense.

(+ x Ay.(12)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 18 / 73

Outline Typed lambda calculus

Typed lambda calculus

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 /73

Outline Typed lambda calculus

Types

Types are sets of expressions, classifying expressions according to their
combinatorial behavior.

Tuo=el|t]|(r—=71)

Where e (for entities) and t (for truth values) are basic types
and 7 — 7 are functional types.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 20/ 73

Outline Typed lambda calculus

Typed lambda calculus

Each lambda expression is assigned a type, specified as follows:

Variables:

For each type 7 we have variables for that type.
Abstraction:

If vi:dand E :: 7, then Av.E 1§ — 7.
Application:

If E1::0 — 7 and E; :: §, then (E; Ep) == 7.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 /73

Outline Typed lambda calculus

Examples

Of which types are the following expressions? (Assuming that numbers are
of type Int, + and * are of type Int — Int — Int.)

Ax.(+ 1 x)

(Ax.(x2) Ay.(xyy))

(Ax.(y x) 2)

Az.(z z)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 22 /73

Typed meanings for natural language

Typed meanings for natural language

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 23 /73

Typed meanings for natural language

Lambda calculus with constants

We extend lambda calculus with logical and non-logical constants.
E:=c|v|(EE)|(Av.E)

vi=x|v’

c:=al|blc|d|el|f
| giant | princess | wizard | happy | laugh | admire | ...
ATV ==V]3

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

24 /73

Typed meanings for natural language

Lambda calculus with constants

Example expressions:

((A (evil x)) (wizard x))
(V Ax.((admire x) c))

Types of logical expressions:

ANt — (t—t)
Vit— (t—t)
—ut—=(t—t)
—unt—t

Vi(e—t)—t
du(e—t)—t

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

25 /73

Typed meanings for natural language

Types of non-logical constants

Individual constants are of type e.

a:. e

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 26 /73

Typed meanings for natural language
Types of non-logical constants
Individual constants are of type e.
a:e
One-place predicate constants are of type e — t.

wizard :: e — t
laugh e —> t
evil:e—t

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 26 /73

Typed meanings for natural language
Types of non-logical constants
Individual constants are of type e.
a:e
One-place predicate constants are of type e — t.

wizard :: e — t
laugh e —> t
evil:e—t

Two-place predicate constants are of type e — (e — t).

admire :: e — (e — t)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

26 / 73

Typed meanings for natural language
Types of non-logical constants
Individual constants are of type e.
a:e
One-place predicate constants are of type e — t.

wizard :: e — t
laugh e —> t
evil:e—t

Two-place predicate constants are of type e — (e — t).
admire :: e — (e — t)
Three-place predicate constants are of type e — (e — (e — t)).

give::e — (e — (e —t))

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

26 / 73

Typed meanings for natural language

Lambda calculus with constants

Lambda calculus with constants subsumes predicate logic.

Lambda calculus Predicate logic
((admire x) y) admire(y, x)

((A (evil x)) (wizard y)) evil(x) A wizard(y)
(V Ax.(happy x)) Vx.happy(x)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 /73

Typed meanings for natural language

Lambda calculus with constants

Lambda calculus with constants subsumes predicate logic.

Lambda calculus Predicate logic
((admire x) y) admire(y, x)

((A (evil x)) (wizard y)) evil(x) A wizard(y)
(V Ax.(happy x)) Vx.happy(x)

For better readability, we abbreviate

(V¥ Ax.(P x)) as Vx.(P x)
((/\ El) E2) as E1 N B>
(— E) as -E

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

27 / 73

Typed meanings for natural language

Example translation

Lexical item Constant

Atreyu
princess
cheered
drunken
admired
gave

a
princess
cheer
drunken
admire
give

(individual constant)
(unary function constant)
(unary function constant)
(unary function constant)
(binary function constant)
(ternary function constant)

Jan van Eijck & Christina Unger

Computational Semantics ESSLLI 2011

28 / 73

Typed meanings for natural language

Eta-reduction

Eta-reduction eliminates redundant lambda abstractions, i.e. lambda

abstractions that only have the purpose of passing its argument to another
function.

Mx.(E x)> E
if x does not occur free in E

For example, happy and Ax.(happy x) are equivalent.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 29 /73

Composing meanings

Composing meanings

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30/ 73

Composing meanings

Example

Atreyu laughed.

S
NP VP
| |
Atreyu laughed

aze Ax.(laughx):e—t

Jan van Eijck & Christina Unger Computational Semantics

ESSLLI 2011

31/ 73

Composing meanings

Example

Atreyu laughed.

S

NP VP

| |
Atreyu laughed

aze Ax.(laughx):e—t

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

31/ 73

Composing meanings

Example

Atreyu laughed.

S
(laugh a) :: t
NP VP
| |
Atreyu laughed

aze Ax.(laughx):e—t

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

31/ 73

Composing meanings

Example

Atreyu found the princess.

S
NP VP
|
Atreyu
2 e /\
\% NP
found the princess
AxAy.((find x) y) me—e—t c:e
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

32/ 73

Composing meanings

Example

Atreyu found the princess.

S

NP VP
\ (MxAy.((find x) y) c) e — t

Atreyu
2 e /\

V NP
found the princess
AxAy.((find x) y) me—e—t c:e
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

32/ 73

Composing meanings

Example

Atreyu found the princess.

S

NP VP
\ Ay ((findc) y) e —t

Atreyu
2 e /\

V NP
found the princess
AxAy.((find x) y) me—e—t c:e
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

32/ 73

Composing meanings

Example

Atreyu found the princess.

S
(A\y.((find c) y) a) = t

NP VP
\ Ay ((findc) y) e —t

Atreyu
2 e /\

V NP
found the princess
AxAy.((find x) y) me—e—t c:e
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

32/ 73

Composing meanings

Example

Atreyu found the princess.

S
((find c) a) == t

NP VP
\ Ay ((findc) y) e —t

Atreyu
2 e /\

V NP
found the princess
AxAy.((find x) y) me—e—t c:e
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

32/ 73

Composing meanings

The meaning of sentences and their parts

The meaning of a sentence is an expression of the typed lambda
calculus corresponding to a formula of first-order predicate logic.

The meaning of its parts are functional expressions of the typed
lambda calculus.

The semantic rules for combining the parts are function
application (as interpretation of subcategorization rules) and
predicate modification (as interpretation of adjunction rules).

Rule-to-rule correspondence:
Match every grammar rule with a rule for semantic interpretation.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 33/73

Composing meanings

Getting started

NAME — Atreyu [NAME] —
NP — NAME [NP] —
N — wizard [N] —
ADJ — evil [ADJ] —
IV — laughed [v] —
VP — IV [VP] —
S+ NP VP [S] —
TV = admired [TV] -
VP — TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] —
N — wizard [N] —
ADJ — evil [ADJ] —
IV — laughed [v] —
VP — IV [VP] —
S+ NP VP [S] —
TV = admired [TV] -
VP — TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] —
ADJ — evil [ADJ] —
IV — laughed [v] —
VP — IV [VP] —
S+ NP VP [S] —
TV = admired [TV] -
VP — TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] —
IV — laughed [v] —
VP = IV [VP] —
S — NP VP [S] —
TV — admired [TV] —
VP = TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [v] —
VP = IV [VP] —
S — NP VP [S] —
TV — admired [TV] —
VP = TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics

ESSLLI 2011

34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] —
S+ NP VP [S] —
TV — admired [TV] —
VP = TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics

ESSLLI 2011

34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]
S+ NP VP [S] —
TV — admired [TV] —
VP = TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics

ESSLLI 2011

34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]
S — NP VP [S] — ([vP] [NP])
TV — admired [TV] —
VP = TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]

S — NP VP [S] — ([VP] [NP])
TV — admired [TV] — AxAy.((admire x) y)
VP = TV NP [VP] —

N — ADJ N [N] —

RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]

S — NP VP [S] — ([VP] [NP])
TV — admired [TV] — AxAy.((admire x) y)
VP = TV NP [VP] — ([TV] [NP])

N — ADJ N [N] —

RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]
S — NP VP [S] — ([VP] [NP])
TV — admired [TV] — AxAy.((admire x) y)
VP = TV NP [VP] — ([TV] [NP])
N — ADJ N [N] = Ax.((JADJ] x) A ([N] x))
RN — N REL VP [RN] —

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]
S — NP VP [S] — ([VP] [NP])
TV — admired [TV] — AxAy.((admire x) y)
VP = TV NP [VP] — ([TV] [NP])
N — ADJ N [N] = Ax.((JADJ] x) A ([N] x))
RN — N REL VP [RN] — Ax.(IN] x) A ([VP])

RN > NRELNP TV [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

34 /73

Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]
S — NP VP [S] — ([VP] [NP])
TV — admired [TV] — AxAy.((admire x) y)
VP = TV NP [VP] — ([TV] [NP])
N — ADJ N [N] = Ax.((JADJ] x) A ([N] x))
RN — N REL VP [RN] — Ax.(IN] x) A ([VP])

RN — NRELNP TV [RN] — Ax.([N] x) A (([TV] x) [NP])

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

34 /73

Quantifier denotations

Quantifier denotations

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 35 /73

Quantifier denotations

Observation

Quantificational NPs do not refer to particular individuals.

Every zombie bites someone.

Nobody has seen a unicorn, because there aren't any!

Maybe quantifiers indicate the quantity of something (all zombies, the
empty set, and so on). But that's not exactly right, as it's not quantities
that get predicated over (it's not the empty set that has seen a unicorn).

Rather, quantifiers relate sets.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 /73

Quantifier denotations

Examples

[np Some [y robot]] [ve failed the Turing Test).

NNVP#D

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 /73

Quantifier denotations

Examples

[np Every [y robot]] [vp failed the Turing Test].

N—VP =0

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 /73

Quantifier denotations

Examples

[nvp No [y robot]] [vp failed the Turing Test).

NNVP=0

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 /73

Quantifier denotations

Quantifiers as second-order predicates

Quantifiers can be expressed as second-order predicates of type
(e—t)—>(e—t)—t.

[some] = AP AQ. 3x.(P x) A (Q x)
[every] = AP AQ.V¥x.(P x) — (Q x)
[no] = AP AQ.Vx.(P x) — —(Q x)
APAQ. —3x.(P x) A (Q x)
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

40 / 73

Quantifier denotations

Example (the easy case)

S
Vx.(wizard x) — (laugh x) == t

NP VP
AQ.Vx.(wizard x) — (Q x) laughed
t(e—t)—t laugh e — t
DET N
every wizard

APAQ.Vx.(P x) — (Q x) wizard e — ¢
(e—=t)—((e—>t)—1t)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

41 /73

Quantifier denotations Problem 1: Uniformity of NP denotations

Problem 1:
Uniformity of NP denotations

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 42 /73

Quantifier denotations Problem 1: Uniformity of NP denotations

Uniformity of NP denotations

NP VP
Atrey
a.e laughed
laugh e — t

Semantic rule: [S] — ([VP] [NP])

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

43 /73

Quantifier denotations Problem 1: Uniformity of NP denotations

Uniformity of NP denotations

S
NP VP
every wizard
AQ.3x.(wizard x) A (Q x) laughed
t(e—t)—>t laugh - e — t

Semantic rule: [S] — ([NP] [VP])

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

43 /73

Quantifier denotations Problem 1: Uniformity of NP denotations

Solution: ‘Generalization to the worst case’

All NPs denote expressions of type (e — t) — t.

[some princess] = AP.3x.(princess x) A (P x)

[every wizard] = AP.Vx.(wizard x) — (P x)
[Atreyu] = AP.(P a)
[Dorothy] = AP.(P d)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

44 /73

Quantifier denotations Problem 1: Uniformity of NP denotations

Solution: ‘Generalization to the worst case’

S
Vx.(wizard x) — (laugh x) == t

T

NP VP
every wizard
AP.Vx.(wizard x) A (P x) laughed
t(e—t)—>t laugh - e — t

Semantic rule: [S] — ([NP] [VP])

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

45/ 73

Quantifier denotations Problem 1: Uniformity of NP denotations

Solution: ‘Generalization to the worst case’

S
(laugh a) = t

T

NP VP
Atreyu
AP.(P a) laughed
(e t)—t laugh:e ot

Semantic rule: [S] — ([NP] [VP])

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

45/ 73

Quantifier denotations Problem 1: Uniformity of NP denotations

Individuals as generalized quantifiers

[Atreyu] = AP.(P a)

Atreyu denotes a function that takes a predicate and hands it the
argument a.

So it tells us, which properties are true of Atreyu.

Technically, Atreyu denotes the characteristic function of the set of all
sets that contain the individual Atreyu.
In other words: Atreyu denotes the set of all properties of Atreyu.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 46 / 73

Quantifier denotations Problem 2: Quantifiers in object position

Problem 2:
Quantifiers in object position

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 47 /73

Quantifier denotations Problem 2: Quantifiers in object position

Quantifiers in object position

S
NP VP
the force
\% NP
strengthens

AxAy.((strengthen x) y) :: e — (e — t) every Jedi
AP.¥x.(jedi x) — (P x)
t(e—=t)—>t

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 48 / 73

Quantifier denotations Problem 2: Quantifiers in object position

Solution 1: Type raising

Herman Hendriks’ Flexible Types approach:

Lexical expressions are assigned a minimal type (e.g. e for
denotations of proper names).
Translations of higher types are derived by type-lifting rules:

Value raising: Any expression of type a can be lifted

to type (a — b) — b.

Argument raising: Any expression of type a — ¢ can be lifted
to type ((a — b) — b) — c.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

49 / 73

Quantifier denotations Problem 2: Quantifiers in object position

Example
S
NP VP
the force
V NP
strengthens
AxAy.((strengthen x) y) - e — (e — t) -
every Jedi
)\79“)\y.(73 Az.((strengthen z) y)) AP (jedi x) — (P x)
t((e—=t)—=t)—=(e—t) (e t) st

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50/ 73

Quantifier denotations Problem 2: Quantifiers in object position

Solution 2: Extracting quantifiers

Quantifier raising

The same effect can be achieved by a semantic rule, e.g. Montague's
Quantifying in rule. Here is our version of it:

VP — TV NP
[VP] = Ay.(INP] Ax.(([TV] x) y))

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 51/ 73

Interpreting our grammar and implementation

Interpreting our grammar and implementation

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 52 /173

Interpreting our grammar and implementation

The picture

string — tree structure — meaning representation

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 /73

Interpreting our grammar and implementation

The picture

string — tree structure — meaning representation

We will now consider tree structures and how to map them to expressions
of typed lambda calculus.

module Day3 where

import Day2 hiding (Tree(..))

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 /73

Interpreting our grammar and implementation

Our grammar

S:=NP VP
NP ::= NAME | DET N |DET RN
ADJ ::= happy | drunken | evil
NAME ::= Atreyu | Dorothy | Goldilocks | Snow White
N ::= boy | princess | dwarf | wizard | ADJ N
RN:=N REL VP|N REL NP TV
REL ::= that
DET ::= some | every | no
VP :=IV|TV NP |DV NP NP
IV ::= cheered | laughed | shuddered
TV ::= admired | helped | defeated | found
DV ::= gave

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

54 / 73

Interpreting our grammar and implementation

Tree structures

A parse tree for a string generated by a grammar G is a tree where:

The root is the start symbol for G.

The interior nodes are nonterminals of G and the children of a node
N correspond to the symbols on the right hand side of some
production rule for T in G.

The leaf nodes are terminal symbols of G.

Every string generated by a grammar has a corresponding parse tree that
illustrates a derivation for that string.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 55 /73

Interpreting our grammar and implementation

Example

Every dwarf defeated some giant.

S
NP VP
/\
DET N T
‘ ‘ TV NP
‘ /\

every dwarf defeated DET N
| |

some giant

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

56 / 73

Interpreting our grammar and implementation

Parse trees

A parse tree is either a leaf with information, or a branch with information
dominating a list of trees.

data Tree a b = Leaf a | Branch b [Tree a b] deriving Show

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 57 /73

Interpreting our grammar and implementation

Parse trees

A parse tree is either a leaf with information, or a branch with information

dominating a list of trees.

data Tree a b = Leaf a |

Branch b [Tree a b]

deriving Show

Example:
tree Tree String String
tree = Branch "S" [Branch "NP" [Branch "DET" [Leaf "every"],
Branch "N" [Leaf "dwarf"]],
Branch "VP" [Branch "TV"
[Leaf "defeated"],
Branch "NP"
[Branch "DET" [Leaf "some"],
Branch "N" [Leaf "giant"]|].
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

57 / 73

Interpreting our grammar and implementation

Example

tree :: Tree String String
tree = Branch "S" [Branch "NP" [Branch "DET" [Leaf "every"l],
Branch "N" [Leaf "dwarf"]l],
Branch "VP" [Branch "TV" [Leaf "defeated"],
Branch "NP" [Branch "DET" [Leaf "some"],
Branch "N" [Leaf "giant"]11]]

S
NP VP
/\/\
DET N

TV NP

| |
‘ ///A\\\
every dwarf defeated DET N

some giant

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 73

Interpreting our grammar and implementation

Implementation

We define a mapping from parse trees to lambda expressions by recursion
over the structure of a parse tree. For a sentence tree it will return the

analogue of the predicate logical formula representing the meaning of this
sentence.

General type: Tree String String -> f(7), where

it — ™) = A1) -> map(m)
fle) = Term
f(t) = Formula

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 59 /73

Interpreting our grammar and implementation

Interpretation and implementation

[S] ==t
S — NP VP [S]=([NP] [VP])

transS :: Tree String String -> Formula
transS (Branch "S" [np,vpl]) = (transNP np) (transVP vp)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

60 / 73

Interpreting our grammar and implementation

Interpretation and implementation

[NP] (e = t)—t
NP — NAME [NP] = [NAME]
NP — DET N [NP] = ([DET] [N])
NP — DET RN [NP] = ([DET] [RN])

transNP :: Tree String String -> (Term -> Formula) -> Formula
transNP (Branch "NP" [name]) = transNAME name
transNP (Branch "NP" [det,n@(Branch "N" _)1]1) =

(transDET det) (transN n)
transNP (Branch "NP" [det,rn@(Branch "RN" _)]) =

(transDET det) (transRN rn)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 61 /73

Interpreting our grammar and implementation

Interpretation and implementation

NAME — Atreyu
NAME — Goldilocks [NAME] = AP.(P b)
NAME — Dorothy [NAME] = AP.(P d)

[NAME] :: (e = t) — ¢t
[NAME] = AP.(P a)

transNAME

transNAME

transNAME

transNAME

Tree

(Branch

(Branch

(Branch

String
n NAME "
n NAME "

"NAME"

String -> (Term -> Formula)

[Leaf

[Leaf

[Leaf

-> Formula
"Atreyu"l) =

\ p -> p (Const
"Goldilocks"]) =

\ p -> p (Const
"Dorothy"]) =

\ p -> p (Const

llall)

ubn)

lldll)

Jan van Eijck & Christina Unger

Computational Semantics

ESSLLI 2011

62 /73

Interpreting our grammar and implementation

Interpretation and implementation

[N] ::e—t
N — wizard [N] = Ax.(wizard x)

N ADJ N '['[N]] = \x.((JADJ] x) A (IN] x))

transN :: Tree String String -> Term -> Formula
transN (Branch "N" [Leaf "wizard"]) =

\ x -> (Atom "wizard" [x])
transN (Branch "N" [Leaf "giant"]) =

\ x -> (Atom "giant" [x])
transN (Branch "N" [Leaf "princess"]) =

\ x -> (Atom "princess" [x])
transN (Branch "N" [Leaf "dwarf"]) =

\ x -> (Atom "dwarf" [x])
transN (Branch "N" [adj,n]) =

\ x -> Conj [transADJ adj x,transN n x]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 63 /73

Interpreting our grammar and implementation

Interpretation and implementation

[ADJ] e — ¢

ADJ — happy [ADJ] = Ax.(happy x)

transADJ Tree String String -> Term -> Formula
transADJ (Branch "ADJ" [Leaf "happy"]l) =

\ x -> Atom "happy" [x]
transADJ (Branch "ADJ" [Leaf "drunken"]) =

\ x -> Atom "drunken" [x]
transADJ (Branch "ADJ" [Leaf "evil"]) =

\ x -> Atom "evil" [x]
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 73

Interpreting our grammar and implementation

Interpretation and implementation

[RN] :e—t
RN — N REL VP [RN] = Ax.(IN] x) A ([VP] x)
RN — N REL NP TV [RN] = Ax.([N] x) A (INP] Ay.(([TV] y) x))

transRN :: Tree String String -> Term -> Formula
transRN (Branch "RN" [n,rel,vpl) =

\ x -> Conj [(transN n x),(transVP vp x)]
transRN (Branch "RN" [n,rel,np,tv]) =

\ x -> Conj [(transN n x),(transNP np (\ y -> (t

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 73

Interpreting our grammar and implementation

Interpretation and implementation

[VP] ::e—t
VP = IV [VP] = [IV]
VP = TV NP [VP] = Ay.(INP] Ax.([TV] %) ¥))
VP — DV NP NP [VP] = Az.([NP] Ay.(INP] Ax.((([TV] x) ¥) 2)))

transVP :: Tree String String -> Term -> Formula
transVP (Branch "VP" [iv]) = transIV iv
transVP (Branch "VP" [tv,np]) =
\ y -> (transNP np) (\ x -> (transTV tv) x y)
transVP (Branch "VP" [dv,npl,np2]) =
\ z -> (transNP npl) (\ y -> (transNP np2)
(\ x -> (transDV dv) x y z))

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 73

Interpreting our grammar and implementation

Interpretation a

nd implementation

[IV] :e—t
IV — cheered [IV] = Ax.(cheered x)

transIV Tree String String -> Term -> Formula
transIV (Branch "IV" [Leaf "cheered"]) =

\ x -> Atom "cheer" [x]
transIV (Branch "IV" [Leaf "laughed"]) =

\ x -> Atom "laugh" [x]
transIV (Branch "IV" [Leaf "shuddered"]) =

\ x -> Atom "shudder" [x]
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 67 /73

Interpreting our grammar and implementation

Interpretation and implementation

[TV] :e— (e —1t)
TV — admired [TV] = Ax\y.((admire x) y)

transTV Tree String String -> Term -> Term -> Formula
transTV (Branch "TV" [Leaf "admired"]) =

\ x y -> Atom "admire" [y,x]
transTV (Branch "TV" [Leaf "helped"]) =

\ x y -> Atom "help" [y,x]
transTV (Branch "TV" [Leaf "defeated"]) =

\ x y -> Atom "defeat" [y,x]
transTV (Branch "TV" [Leaf "found"]) =

\ x y -> Atom "find" [y,x]
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 68 / 73

Interpreting our grammar and implementation

Interpretation and implementation

[DV] :: e — (e = (e = 1))
DV — gave [TV] = AxAyAy.(((give x) y) z)

transDV :: Tree String String -> Term -> Term -> Term
-> Formula
transDV (Branch "DV" [Leaf "gave"]) =
\ x y z -> Atom "give" [z,y,x]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

69 / 73

Interpreting our grammar and implementation

Interpretation and implementation

[DET] = (e > t) > (e —>t) >t

DET — every [DET] = APAQ.Yx.((P x) — (Q x))
DET — some [DET] = APAQ.3x.((P x) = (Q x))
DET — no [DET] = APAQ.=3x.(P x) — (Q x))

transDET

transDET

transDET

transDET

Tree

(Branch

Forall

(Branch
Exists

(Branch

String String -> (Term -> Formula)
-> (Term -> Formula)
-> Formula

"DET" [Leaf "every"]) p q =

i (Impl (p (Var i)) (q (Var i)))
where i = fresh [p,ql]

"DET" [Leaf "some"]) p q =

i (Conj [p (Var i),q (Var i)])
where i = fresh [p,ql]

"DET" [Leaf "no"]) Ppq-=

Neg (Exists i (Conj [p (Var i),q (Var i)]))

where i = fresh [p,ql]

Jan van Eijck & Christina Unger

Computational Semantics ESSLLI 2011

70 / 73

Interpreting our grammar and implementation

Fresh variables

...where i = fresh [p,q]

fresh :: [Term -> Formula] -> Int
fresh xs | vars == [] =1
| otherwise = 1 + maximum vars
where
vars = concat $ map (\ f -> getVars (f (Const "*"))) xs
Where getVars :: Formula -> [Int] collects all variables occurring

in a formula.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 71/ 73

Interpreting our grammar and implementation

Collecting variables

getVars
getVars
getVars
getVars
getVars
getVars
getVars
getVars

getVar

getVar (Const
getVar (Var n) =

Formula
(Atom _ ts)
(Neg £)
(Conj f£fs)
(Disj f£fs)
(Impl f1 £2)
(Forall n f)
(Exists n f)

Term

-> [Int]
2) =11
[n]

-> [Int]

concat $ map getVar ts
getVars f

concat $ map getVars fs
concat $ map getVars fs
getVars f1 ++ getVars f£2
n : getVars f

n : getVars f

Jan van Eijck & Christina Unger

Computational Semantics ESSLLI 2011

72/ 73

Interpreting our grammar and implementation

Course overview

Day 2:

Meaning representations and (predicate) logic

Day 3:

Lambda calculus and the composition of meanings
o Day 4:

Extensionality and intensionality
e Day 5:

From strings to truth conditions and beyond

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 73/ 73

	Lambda calculus
	Outline
	Formal definition and properties
	Typed lambda calculus

	Typed meanings for natural language
	Composing meanings
	Quantifier denotations
	
	

	Interpreting our grammar and implementation

