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Outline

Lambda calculus

Lambdas changed my life.

(Barbara H. Partee)

All you need is lambda.

(Simon Peyton-Jones)
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Outline

History

In 1936, Turing and Church independently introduced two equivalent
models of computation:

Alan Turing: Turing Machine

A function is computable if a sequence of
instructions can be specified and then
carried out by a simple abstract
computational device.

Alonzo Church: Lambda Calculus
Every computable function is a function
that is definable in the lambda calculus.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 4 /73



Outline

Connection to programming languages

Imperative programming languages are based on the way a Turing
machine is instructed.

Functional programming languages are based on the lambda
calculus.

In fact, the lambda calculus is the smallest universal programming
language of the world (universal, because any computable function can be
expressed and evaluated).

Expressions correspond to programs.

The reduction of an expression corresponds to program execution.

In fact, it is the core of functional programming languages, which are
basically executable (typed) lambda calculi extended with constants,
datatypes, input/output, etc.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 5/73



Outline

Lambda calculus

The lambda calculus is a formal system for defining and investigating
functions.

Two basic concept:

function abstraction for representing functions, using a
variable-binding operator A

function application, corresponding to substitution of bound variables
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Outline Formal definition and properties

Formal definition and properties
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Outline Formal definition and properties

Lambda calculus: Formal definition

Variables v and expressions E are defined as follows:

vi=x|v’

E:=v|A.E|(EE)
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Outline Formal definition and properties

Variables

vi=x|v’

E:=v|Av.E|(EE)

For our purposes, we write variables as lower case letters x,y, z, . . .,
possibly with indices.

Haskell: Variables (including function names) begin with a lower case
letter.

x, x°, x1

variable, newVAR, my_variable
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Outline Formal definition and properties

Function abstraction

vi=x|v’

E:=v|A.E|(EE)

Av.E represents a function, where v is the variable abstracted over (bound
by the operator \), and E is the body of the function.

Examples: Ax.x, Ax.Ay.x
Haskell: Function abstraction is written as \ v -> E.

\ x > x

Vx> Ny ->x
or shorter: \ x y -> x
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Outline Formal definition and properties

Function application

vi=x|v’

E:=v|A.E|(EE)

Function application represents applying an expression to another
expression, e.g. a function to an argument.

Example: (Ax.x y)

Haskell: Function application is written as E E.

ANx—>x)y
\Nxy->%x z
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Outline Formal definition and properties

Reducing expressions

Function application expressions can be reduced to simpler expressions.

This corresponds to substitution of bound variables.

Reduction rule (called beta reduction):

()\V.El Ez) > E [V = E2]

Where E; [v := E;] denotes the substitution of E;
for all free occurrences of v in E;.

Example:

(M.(xy) Az.z) >
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Outline Formal definition and properties

Free and bound variables

An occurrence of the variable v in the expression E is bound if it is in the
scope of a lambda prefix Av.

Example: \y.((Ax.x y) x)
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Outline Formal definition and properties

Free and bound variables

An occurrence of the variable v in the expression E is bound if it is in the
scope of a lambda prefix Av.

Example: \y.((Ax.x y) x)

Note: When substituting expressions, we have to make sure that no variables get
accidentally captured.

(AxAy.(y x) y)

This can be ensured by variable renaming.
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Outline Formal definition and properties

Observation

Reductions need not come to an end.

(Mx.(x x) Ax.(x x))
(Ax.((x x) x) Ax.((x x) x))
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Outline Formal definition and properties

Confluence

The result of beta reduction is independent from the order of reduction,
i.e. if an expression can be evaluated in two different ways and both ways

terminate, then both ways will yield the same result (Church-Rosser
theorem).

(W.(y x) (Mxx 2))

Note: The reduction order does, however, play a role for efficiency and can
influence whether a reduction terminates or not.

(Az.y (Ax.(x x) Ax.(x x)))
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Outline Formal definition and properties

Conventions

Applications associate to the left; thus, when applying a function to a
number of arguments, we can write f x y z instead of (((f x) y) z).

The body of a lambda abstraction (the part after the dot) extends as
far to the right as possible. l.e., Ax.E; E; means Ax.(E; Ep), and not
(\x.E1) B
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Outline Formal definition and properties

Adding function constants

Lambda calculus as we saw it is already enough to define natural numbers
and arithmetic operations. We can abbreviate the corresponding
expressions by adding constants to the language:

1,2,3. .. for natural numbers
+ and * for addition and multiplication

Analogously, we can add constants a, b, ¢ for entities, wizard for unary
functions, admire for binary functions, and so on.
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Outline Formal definition and properties

Observation

We can build expressions that do not make much sense.

(+ x Ay.(12)
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Outline  Typed lambda calculus

Typed lambda calculus
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Outline  Typed lambda calculus

Types

Types are sets of expressions, classifying expressions according to their
combinatorial behavior.

Tuo=el|t]|(r—=71)

Where e (for entities) and t (for truth values) are basic types
and 7 — 7 are functional types.
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Outline Typed lambda calculus

Typed lambda calculus

Each lambda expression is assigned a type, specified as follows:

Variables:

For each type 7 we have variables for that type.
Abstraction:

If vi:dand E :: 7, then Av.E 1§ — 7.
Application:

If E1::0 — 7 and E; :: §, then (E; Ep) == 7.
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Outline Typed lambda calculus

Examples

Of which types are the following expressions? (Assuming that numbers are
of type Int, + and * are of type Int — Int — Int.)

Ax.(+ 1 x)

(Ax.(x2) Ay.(xyy))

(Ax.(y x) 2)

Az.(z z)
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Typed meanings for natural language

Typed meanings for natural language
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Typed meanings for natural language

Lambda calculus with constants

We extend lambda calculus with logical and non-logical constants.
E:=c|v|(EE)|(Av.E)

vi=x|v’

c:=al|blc|d|el|f
| giant | princess | wizard | happy | laugh | admire | ...
ATV ==V ]3
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Typed meanings for natural language

Lambda calculus with constants

Example expressions:

((A (evil x)) (wizard x))
(V Ax.((admire x) c))

Types of logical expressions:

ANt — (t—t)
Vit— (t—t)
—ut—=(t—t)
—unt—t

Vi(e—t)—t
du(e—t)—t
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Typed meanings for natural language

Types of non-logical constants

Individual constants are of type e.

a:. e
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Typed meanings for natural language
Types of non-logical constants
Individual constants are of type e.
a:e
One-place predicate constants are of type e — t.

wizard :: e — t
laugh e —> t
evil:e—t
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Typed meanings for natural language
Types of non-logical constants
Individual constants are of type e.
a:e
One-place predicate constants are of type e — t.

wizard :: e — t
laugh e —> t
evil:e—t

Two-place predicate constants are of type e — (e — t).

admire :: e — (e — t)
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Typed meanings for natural language
Types of non-logical constants
Individual constants are of type e.
a:e
One-place predicate constants are of type e — t.

wizard :: e — t
laugh e —> t
evil:e—t

Two-place predicate constants are of type e — (e — t).
admire :: e — (e — t)
Three-place predicate constants are of type e — (e — (e — t)).

give::e — (e — (e —t))
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Typed meanings for natural language

Lambda calculus with constants

Lambda calculus with constants subsumes predicate logic.

Lambda calculus Predicate logic
((admire x) y) admire(y, x)

((A (evil x)) (wizard y)) evil(x) A wizard(y)
(V Ax.(happy x)) Vx.happy(x)
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Typed meanings for natural language

Lambda calculus with constants

Lambda calculus with constants subsumes predicate logic.

Lambda calculus Predicate logic
((admire x) y) admire(y, x)

((A (evil x)) (wizard y)) evil(x) A wizard(y)
(V Ax.(happy x)) Vx.happy(x)

For better readability, we abbreviate

(V¥ Ax.(P x)) as Vx.(P x)
((/\ El) E2) as E1 N B>
(— E) as -E
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Typed meanings for natural language

Example translation

Lexical item Constant

Atreyu
princess
cheered
drunken
admired
gave

a
princess
cheer
drunken
admire
give

(individual constant)
(unary function constant)
(unary function constant)
(unary function constant)
(binary function constant)
(ternary function constant)
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Typed meanings for natural language

Eta-reduction

Eta-reduction eliminates redundant lambda abstractions, i.e. lambda

abstractions that only have the purpose of passing its argument to another
function.

Mx.(E x)> E
if x does not occur free in E

For example, happy and Ax.(happy x) are equivalent.
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Composing meanings

Composing meanings
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Composing meanings

Example

Atreyu laughed.

S
NP VP
| |
Atreyu laughed

aze Ax.(laughx):e—t
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Composing meanings

Example

Atreyu laughed.

S

NP VP

| |
Atreyu laughed

aze Ax.(laughx):e—t
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Composing meanings

Example

Atreyu laughed.

S
(laugh a) :: t
NP VP
| |
Atreyu laughed

aze Ax.(laughx):e—t
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Composing meanings

Example

Atreyu found the princess.

S
NP VP
|
Atreyu
2 e /\
\% NP
found the princess
AxAy.((find x) y) me—e—t c:e
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Composing meanings

Example

Atreyu found the princess.

S

NP VP
\ (MxAy.((find x) y) c) e — t

Atreyu
2 e /\

V NP
found the princess
AxAy.((find x) y) me—e—t c:e
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Composing meanings

Example

Atreyu found the princess.

S

NP VP
\ Ay ((findc) y) e —t

Atreyu
2 e /\

V NP
found the princess
AxAy.((find x) y) me—e—t c:e
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Composing meanings

Example

Atreyu found the princess.

S
(A\y.((find c) y) a) = t

NP VP
\ Ay ((findc) y) e —t

Atreyu
2 e /\

V NP
found the princess
AxAy.((find x) y) me—e—t c:e
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Composing meanings

Example

Atreyu found the princess.

S
((find c) a) == t

NP VP
\ Ay ((findc) y) e —t

Atreyu
2 e /\

V NP
found the princess
AxAy.((find x) y) me—e—t c:e
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Composing meanings

The meaning of sentences and their parts

The meaning of a sentence is an expression of the typed lambda
calculus corresponding to a formula of first-order predicate logic.

The meaning of its parts are functional expressions of the typed
lambda calculus.

The semantic rules for combining the parts are function
application (as interpretation of subcategorization rules) and
predicate modification (as interpretation of adjunction rules).

Rule-to-rule correspondence:
Match every grammar rule with a rule for semantic interpretation.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 33/73



Composing meanings

Getting started

NAME — Atreyu [NAME] —
NP — NAME [NP] —
N — wizard [N] —
ADJ — evil [ADJ] —
IV — laughed [v] —
VP — IV [VP] —
S+ NP VP [S] —
TV = admired [TV] -
VP — TV NP [VP] —
N — ADJ N [N] —
RN — N REL VP [RN] —

RN > NRELNP TV  [RN]—

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 34 /73



Composing meanings

Getting started
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Composing meanings

Getting started
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Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
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Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
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IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]
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Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

34 /73



Composing meanings

Getting started
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Composing meanings

Getting started

NAME — Atreyu [NAME] — a
NP — NAME [NP] — [NAME]
N — wizard [N] — Ax.(wizard x)
ADJ — evil [ADJ] — Ax.(evil x)
IV — laughed [IV] — Ax.(laugh x)
VP = IV [VP] — [IV]
S — NP VP [S] — ([VP] [NP])
TV — admired [TV] — AxAy.((admire x) y)
VP = TV NP [VP] — ([TV] [NP])
N — ADJ N [N] = Ax.((JADJ] x) A ([N] x))
RN — N REL VP [RN] — Ax.(IN] x) A ([VP] )

RN — NRELNP TV  [RN] — Ax.([N] x) A (([TV] x) [NP])
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Quantifier denotations

Quantifier denotations
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Quantifier denotations

Observation

Quantificational NPs do not refer to particular individuals.

Every zombie bites someone.

Nobody has seen a unicorn, because there aren't any!

Maybe quantifiers indicate the quantity of something (all zombies, the
empty set, and so on). But that's not exactly right, as it's not quantities
that get predicated over (it's not the empty set that has seen a unicorn).

Rather, quantifiers relate sets.
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Quantifier denotations

Examples

[np Some [y robot]] [ve failed the Turing Test).

NNVP#D
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Quantifier denotations

Examples

[np Every [y robot]] [vp failed the Turing Test].

N—VP =0
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Quantifier denotations

Examples

[nvp No [y robot]] [vp failed the Turing Test).

NNVP=0
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Quantifier denotations

Quantifiers as second-order predicates

Quantifiers can be expressed as second-order predicates of type
(e—t)—>(e—t)—t.

[some] = AP AQ. 3x.(P x) A (Q x)
[every] = AP AQ.V¥x.(P x) — (Q x)
[no] = AP AQ.Vx.(P x) — —(Q x)
APAQ. —3x.(P x) A (Q x)
Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011

40 / 73



Quantifier denotations

Example (the easy case)

S
Vx.(wizard x) — (laugh x) == t

NP VP
AQ.Vx.(wizard x) — (Q x)  laughed
t(e—t)—t laugh e — t
DET N
every wizard

APAQ.Vx.(P x) — (Q x)  wizard e — ¢
(e—=t)—((e—>t)—1t)
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Quantifier denotations Problem 1: Uniformity of NP denotations

Problem 1:
Uniformity of NP denotations
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Quantifier denotations Problem 1: Uniformity of NP denotations

Uniformity of NP denotations

NP VP
Atrey
a.e laughed
laugh e — t

Semantic rule: [S] — ([VP] [NP])
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Quantifier denotations Problem 1: Uniformity of NP denotations

Uniformity of NP denotations

S
NP VP
every wizard
AQ.3x.(wizard x) A (Q x) laughed
t(e—t)—>t laugh - e — t

Semantic rule: [S] — ([NP] [VP])
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Quantifier denotations Problem 1: Uniformity of NP denotations

Solution: ‘Generalization to the worst case’

All NPs denote expressions of type (e — t) — t.

[some princess] = AP.3x.(princess x) A (P x)

[every wizard] = AP.Vx.(wizard x) — (P x)
[Atreyu] = AP.(P a)
[Dorothy] = AP.(P d)
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Quantifier denotations Problem 1: Uniformity of NP denotations

Solution: ‘Generalization to the worst case’

S
Vx.(wizard x) — (laugh x) == t

T

NP VP
every wizard
AP.Vx.(wizard x) A (P x) laughed
t(e—t)—>t laugh - e — t

Semantic rule: [S] — ([NP] [VP])
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Quantifier denotations Problem 1: Uniformity of NP denotations

Solution: ‘Generalization to the worst case’

S
(laugh a) = t

T

NP VP
Atreyu
AP.(P a) laughed
(e t)—t laugh:e ot

Semantic rule: [S] — ([NP] [VP])
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Quantifier denotations Problem 1: Uniformity of NP denotations

Individuals as generalized quantifiers

[Atreyu] = AP.(P a)

Atreyu denotes a function that takes a predicate and hands it the
argument a.

So it tells us, which properties are true of Atreyu.

Technically, Atreyu denotes the characteristic function of the set of all
sets that contain the individual Atreyu.
In other words: Atreyu denotes the set of all properties of Atreyu.
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Quantifier denotations Problem 2: Quantifiers in object position

Problem 2:
Quantifiers in object position
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Quantifier denotations Problem 2: Quantifiers in object position

Quantifiers in object position

S
NP VP
the force
\% NP
strengthens

AxAy.((strengthen x) y) :: e — (e — t) every Jedi
AP.¥x.(jedi x) — (P x)
t(e—=t)—>t
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Quantifier denotations Problem 2: Quantifiers in object position

Solution 1: Type raising

Herman Hendriks’ Flexible Types approach:

Lexical expressions are assigned a minimal type (e.g. e for
denotations of proper names).
Translations of higher types are derived by type-lifting rules:

Value raising: Any expression of type a can be lifted

to type (a — b) — b.

Argument raising: Any expression of type a — ¢ can be lifted
to type ((a — b) — b) — c.
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Quantifier denotations Problem 2: Quantifiers in object position

Example
S
NP VP
the force
V NP
strengthens
AxAy.((strengthen x) y) - e — (e — t) -
every Jedi
)\79“)\y.(73 Az.((strengthen z) y)) AP (jedi x) — (P x)
t((e—=t)—=t)—=(e—t) (e t) st

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50/ 73



Quantifier denotations Problem 2: Quantifiers in object position

Solution 2: Extracting quantifiers

Quantifier raising

The same effect can be achieved by a semantic rule, e.g. Montague's
Quantifying in rule. Here is our version of it:

VP — TV NP
[VP] = Ay.(INP] Ax.(([TV] x) y))

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 51/ 73



Interpreting our grammar and implementation

Interpreting our grammar and implementation
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Interpreting our grammar and implementation

The picture

string — tree structure — meaning representation
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Interpreting our grammar and implementation

The picture

string — tree structure — meaning representation

We will now consider tree structures and how to map them to expressions
of typed lambda calculus.

module Day3 where

import Day2 hiding (Tree(..))
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Interpreting our grammar and implementation

Our grammar

S:=NP VP
NP ::= NAME | DET N |DET RN
ADJ ::= happy | drunken | evil
NAME ::= Atreyu | Dorothy | Goldilocks | Snow White
N ::= boy | princess | dwarf | wizard | ADJ N
RN:=N REL VP|N REL NP TV
REL ::= that
DET ::= some | every | no
VP :=IV|TV NP |DV NP NP
IV ::= cheered | laughed | shuddered
TV ::= admired | helped | defeated | found
DV ::= gave
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Interpreting our grammar and implementation

Tree structures

A parse tree for a string generated by a grammar G is a tree where:

The root is the start symbol for G.

The interior nodes are nonterminals of G and the children of a node
N correspond to the symbols on the right hand side of some
production rule for T in G.

The leaf nodes are terminal symbols of G.

Every string generated by a grammar has a corresponding parse tree that
illustrates a derivation for that string.
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Interpreting our grammar and implementation

Example

Every dwarf defeated some giant.

S
NP VP
/\
DET N T
‘ ‘ TV NP
‘ /\

every dwarf defeated DET N
| |

some giant
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Interpreting our grammar and implementation

Parse trees

A parse tree is either a leaf with information, or a branch with information
dominating a list of trees.

data Tree a b = Leaf a | Branch b [Tree a b] deriving Show
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Interpreting our grammar and implementation

Parse trees

A parse tree is either a leaf with information, or a branch with information

dominating a list of trees.

data Tree a b = Leaf a |

Branch b [Tree a b]

deriving Show

Example:
tree Tree String String
tree = Branch "S" [Branch "NP" [Branch "DET" [Leaf "every"],
Branch "N" [Leaf "dwarf"]],
Branch "VP" [Branch "TV"
[Leaf "defeated"],
Branch "NP"
[Branch "DET" [Leaf "some"],
Branch "N" [Leaf "giant"]|].
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Interpreting our grammar and implementation

Example

tree :: Tree String String
tree = Branch "S" [Branch "NP" [Branch "DET" [Leaf "every"l],
Branch "N" [Leaf "dwarf"]l],
Branch "VP" [Branch "TV" [Leaf "defeated"],
Branch "NP" [Branch "DET" [Leaf "some"],
Branch "N" [Leaf "giant"]11]]

S
NP VP
/\/\
DET N

TV NP

| |
‘ ///A\\\
every dwarf defeated DET N

some giant
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Interpreting our grammar and implementation

Implementation

We define a mapping from parse trees to lambda expressions by recursion
over the structure of a parse tree. For a sentence tree it will return the

analogue of the predicate logical formula representing the meaning of this
sentence.

General type: Tree String String -> f(7), where

it — ™) = A1) -> map(m)
fle) = Term
f(t) = Formula
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Interpreting our grammar and implementation

Interpretation and implementation

[S] ==t
S — NP VP [S]=([NP] [VP])

transS :: Tree String String -> Formula
transS (Branch "S" [np,vpl]) = (transNP np) (transVP vp)
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Interpreting our grammar and implementation

Interpretation and implementation

[NP] (e = t)—t
NP — NAME [NP] = [NAME]
NP — DET N [NP] = ([DET] [N])
NP — DET RN [NP] = ([DET] [RN])

transNP :: Tree String String -> (Term -> Formula) -> Formula
transNP (Branch "NP" [name]) = transNAME name
transNP (Branch "NP" [det,n@(Branch "N" _)1]1) =

(transDET det) (transN n)
transNP (Branch "NP" [det,rn@(Branch "RN" _)]) =

(transDET det) (transRN rn)
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Interpreting our grammar and implementation

Interpretation and implementation

NAME — Atreyu
NAME — Goldilocks [NAME] = AP.(P b)
NAME — Dorothy [NAME] = AP.(P d)

[NAME] :: (e = t) — ¢t
[NAME] = AP.(P a)

transNAME

transNAME

transNAME

transNAME

Tree

(Branch

(Branch

(Branch

String
n NAME "
n NAME "

"NAME"

String -> (Term -> Formula)

[Leaf

[Leaf

[Leaf

-> Formula
"Atreyu"l) =

\ p -> p (Const
"Goldilocks"]) =

\ p -> p (Const
"Dorothy"]) =

\ p -> p (Const

llall)

ubn)

lldll)
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Interpreting our grammar and implementation

Interpretation and implementation

[N] ::e—t
N — wizard [N] = Ax.(wizard x)

N ADJ N '['[N]] = \x.((JADJ] x) A (IN] x))

transN :: Tree String String -> Term -> Formula
transN (Branch "N" [Leaf "wizard"]) =

\ x -> (Atom "wizard" [x])
transN (Branch "N" [Leaf "giant"]) =

\ x -> (Atom "giant" [x])
transN (Branch "N" [Leaf "princess"]) =

\ x -> (Atom "princess" [x])
transN (Branch "N" [Leaf "dwarf"]) =

\ x -> (Atom "dwarf" [x])
transN (Branch "N" [adj,n]) =

\ x -> Conj [transADJ adj x,transN n x]
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Interpreting our grammar and implementation

Interpretation and implementation

[ADJ] e — ¢

ADJ — happy [ADJ] = Ax.(happy x)

transADJ Tree String String -> Term -> Formula
transADJ (Branch "ADJ" [Leaf "happy"]l) =

\ x -> Atom "happy" [x]
transADJ (Branch "ADJ" [Leaf "drunken"]) =

\ x -> Atom "drunken" [x]
transADJ (Branch "ADJ" [Leaf "evil"]) =

\ x -> Atom "evil" [x]
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Interpreting our grammar and implementation

Interpretation and implementation

[RN] :e—t
RN — N REL VP [RN] = Ax.(IN] x) A ([VP] x)
RN — N REL NP TV [RN] = Ax.([N] x) A (INP] Ay.(([TV] y) x))

transRN :: Tree String String -> Term -> Formula
transRN (Branch "RN" [n,rel,vpl) =

\ x -> Conj [(transN n x),(transVP vp x)]
transRN (Branch "RN" [n,rel,np,tv]) =

\ x -> Conj [(transN n x),(transNP np (\ y -> (t

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 73



Interpreting our grammar and implementation

Interpretation and implementation

[VP] ::e—t
VP = IV [VP] = [IV]
VP = TV NP [VP] = Ay.(INP] Ax.([TV] %) ¥))
VP — DV NP NP [VP] = Az.([NP] Ay.(INP] Ax.((([TV] x) ¥) 2)))

transVP :: Tree String String -> Term -> Formula
transVP (Branch "VP" [iv]) = transIV iv
transVP (Branch "VP" [tv,np]) =
\ y -> (transNP np) (\ x -> (transTV tv) x y)
transVP (Branch "VP" [dv,npl,np2]) =
\ z -> (transNP npl) (\ y -> (transNP np2)
(\ x -> (transDV dv) x y z))
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Interpreting our grammar and implementation

Interpretation a

nd implementation

[IV] :e—t
IV — cheered [IV] = Ax.(cheered x)

transIV Tree String String -> Term -> Formula
transIV (Branch "IV" [Leaf "cheered"]) =

\ x -> Atom "cheer" [x]
transIV (Branch "IV" [Leaf "laughed"]) =

\ x -> Atom "laugh" [x]
transIV (Branch "IV" [Leaf "shuddered"]) =

\ x -> Atom "shudder" [x]
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Interpreting our grammar and implementation

Interpretation and implementation

[TV] :e— (e —1t)
TV — admired [TV] = Ax\y.((admire x) y)

transTV Tree String String -> Term -> Term -> Formula
transTV (Branch "TV" [Leaf "admired"]) =

\ x y -> Atom "admire" [y,x]
transTV (Branch "TV" [Leaf "helped"]) =

\ x y -> Atom "help" [y,x]
transTV (Branch "TV" [Leaf "defeated"]) =

\ x y -> Atom "defeat" [y,x]
transTV (Branch "TV" [Leaf "found"]) =

\ x y -> Atom "find" [y,x]
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Interpreting our grammar and implementation

Interpretation and implementation

[DV] :: e — (e = (e = 1))
DV — gave [TV] = AxAyAy.(((give x) y) z)

transDV :: Tree String String -> Term -> Term -> Term
-> Formula
transDV (Branch "DV" [Leaf "gave"]) =
\ x y z -> Atom "give" [z,y,x]
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Interpreting our grammar and implementation

Interpretation and implementation

[DET] = (e > t) > (e —>t) >t

DET — every [DET] = APAQ.Yx.((P x) — (Q x))
DET — some [DET] = APAQ.3x.((P x) = (Q x))
DET — no [DET] = APAQ.=3x.(P x) — (Q x))

transDET

transDET

transDET

transDET

Tree

(Branch

Forall

(Branch
Exists

(Branch

String String -> (Term -> Formula)
-> (Term -> Formula)
-> Formula

"DET" [Leaf "every"]) p q =

i (Impl (p (Var i)) (q (Var i)))
where i = fresh [p,ql]

"DET" [Leaf "some"]) p q =

i (Conj [p (Var i),q (Var i)])
where i = fresh [p,ql]

"DET" [Leaf "no"]) Ppq-=

Neg (Exists i (Conj [p (Var i),q (Var i)]))

where i = fresh [p,ql]
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Interpreting our grammar and implementation

Fresh variables

...where i = fresh [p,q]

fresh :: [Term -> Formula] -> Int
fresh xs | vars == [] =1
| otherwise = 1 + maximum vars
where
vars = concat $ map (\ f -> getVars (f (Const "*"))) xs
Where getVars :: Formula -> [Int] collects all variables occurring

in a formula.
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Interpreting our grammar and implementation

Collecting variables

getVars
getVars
getVars
getVars
getVars
getVars
getVars
getVars

getVar

getVar (Const
getVar (Var n) =

Formula
(Atom _ ts)
(Neg £)
(Conj f£fs)
(Disj f£fs)
(Impl f1 £2)
(Forall n f)
(Exists n f)

Term

-> [Int]
2) =11
[n]

-> [Int]

concat $ map getVar ts
getVars f

concat $ map getVars fs
concat $ map getVars fs
getVars f1 ++ getVars f£2
n : getVars f

n : getVars f
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Interpreting our grammar and implementation

Course overview

Day 2:

Meaning representations and (predicate) logic

Day 3:

Lambda calculus and the composition of meanings
o Day 4:

Extensionality and intensionality
e Day 5:

From strings to truth conditions and beyond
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