Haskell — Curried Functions

Copyright (© 2013 Christian Collberg




Infix Functions



Declaring Infix Functions

@ Sometimes it is more natural to use an infix notation for a
function application, rather than the normal prefix one:

@ 5 + 6 (infix)
o (+) 5 6 (prefix)
@ Haskell predeclares some infix operators in the standard
prelude, such as those for arithmetic.

@ For each operator we need to specify its precedence and
associativity. The higher precedence of an operator, the
stronger it binds (attracts) its arguments: hence:

3 + 5%¥4 = 3 + (5%4)
3+5x4 # (3+5) x4

3/22



Declaring Infix Functions. ..

@ The associativity of an operator describes how it binds when
combined with operators of equal precedence. So, is

5-3+9 = (5-3)+9 = 11
OR
5-3+9 = 5-(3+9) = -7
The answer is that + and - associate to the left, i.e.
parentheses are inserted from the left.

@ Some operators are right associative: 57372 = 57(372)

@ Some operators have free (or no) associativity. Combining
operators with free associativity is an error:

b==4<3 = ERROR

4/22



Declaring Infix Functions. ..

@ The syntax for declaring operators:

infixr prec oper -- right assoc.
infixl prec oper -- left assoc.
infix prec oper -- free assoc.

From the standard prelude:

infixl 7 *
infix 7 /, ‘div‘, ‘rem‘, ‘mod°
infix 4 ==, /=, <, <=, >=, >
@ An infix function can be used in a prefix function application,
by including it in parenthesis. Example:

7 (+) 5 ((x) 6 4)
29

5/22



Multi-Argument Functions



Multi-Argument Functions

@ Haskell only supports one-argument functions.

@ An n-argument function f(ai,--- ,an) is constructed in either
of two ways:

@ By making the one input argument to f a tuple holding the n

arguments.
@ By letting f “consume” one argument at a time. This is called
currying .
Tuple ‘ Currying
add :: (Int,Int)->Int | add :: Int->Int->Int
add (a, b) = a + b add ab=a+b

7/22



Currying

(]

Currying is the preferred way of constructing multi-argument
functions.

@ The main advantage of currying is that it allows us to define
specialized versions of an existing function.

@ A function is specialized by supplying values for one or more
(but not all) of its arguments.

@ Let's look at Haskell's plus operator (+). It has the type
(+) :: Int -> (Int -> Int).
o If we give two arguments to (+) it will return an Int:

(+) 53 =8

8/22



Currying. ..

@ If we just give one argument (5) to (+) it will instead return a
function which “adds 5 to things”. The type of this
specialized version of (+) is Int -> Int.

@ Internally, Haskell constructs an intermediate — specialized -
function:
add5 :: Int -> Int
addb a =5 + a

@ Hence, (+) 5 3 is evaluated in two steps. First (+) 5 is
evaluated. It returns a function which
adds 5 to its argument. We apply the second argument 3 to
this new function, and the result 8 is returned.

9/22



Currying. ..

@ To summarize, Haskell only supports one-argument functions.
Multi-argument functions are constructed by successive
application of arguments, one at a time.

@ Currying is named after logician Haskell B. Curry (1900-1982)
who popularized it. It was invented by Schonfinkel in 1924.
Schonfinkeling doesn't sound too good...

@ Note: Function application (f x) has higher precedence (10)
than any other operator. Example:

f5+1 < (f5) +1
f56 < (f B) 6

10/22



Currying Example

@ Let's see what happens when we evaluate f 3 4 5, where £ is
a 3-argument function that returns the sum of its arguments.

f :: Int -> (Int -> (Int -> Int))
fxyz=x+y+2z

f345=((f3) 45

11/22



Currying Example. . .

@ (f 3) returns a function £’ y z (£’ is a specialization of f)
that adds 3 to its next two arguments.

£f345=((f3) 4 5= (f> 4) 5

£’ :: Int -> (Int -> Int)
fPyz=3+y+z

12/22



Currying Example. . .

@ (f’ 4) (= (f 3) 4) returns a function £’z (£’ is a
specialization of £’) that adds (3+4) to its argument.

f345=((f3) 4 5= (f” 4) 5
= £’ 5

£’ :: 1Int -> Int
£’ z=3+4+ z

@ Finally, we can apply £’ to the last argument (5) and get the
result:

f345=((f3)4) 5= (f"4)5
= f£’’ 5 = 3+4+5 = 12

13/22



Currying Example

The Combinatorial Function:

@ The combinatorial function (f) “n choose r", computes the
number of ways to pick r objects from n.

(7) = o

In Haskell:

comb :: Int -> Int -> Int
comb n r = fact n/(fact rxfact(n-r))

? comb 5 3
10

14/22



Currying Example. . .

comb :: Int -> Int -> Int
comb n r = fact n/(fact rxfact(n-r))

comb 5 3 = (comb 5) 3 =
comb® 3 =
120 / (fact 3 * (fact 5-3)) =
120 / (6 * (fact 5-3)) =
120 / (6 * fact 2) =
120 / (6 * 2) =
120 / 12 =
10

comb® r = 120 / (fact r * fact(5-r))

@ comb® is the result of partially applying comb to its first
argument.

15/22



Associativity

@ Function application is left-associative:
fab=(fa)b|fab#f (ab)
@ The function space symbol ‘->’ is right-associative:
a->b->c=a->(b->c)
a->b->c# (a->b) >c
@ f takes an Int as argument and returns a function of type

Int -> Int. g takes a function of type Int -> Int as
argument and returns an Int:

£’ :: Int -> (Int -> Int)
f :: Int -> Int -> Int
g :: (Int -> Int) -> Int

16/22



What's the Type, Mr. Wolf?

@ If the type of a function £ is

t] > tr > - > t, >t
@ and f is applied to arguments

er::ty, exiito, -+, er:iitg,
@ andk<n

@ then the result type is given by cancelling the types t1 - -+ tg:

£1 => Lo => o0 > Ly <>ty > - > 1, >0t
@ Hence, f e; ey -+ ey returns an object of type
Tpyl => 0 >ty > t.

This is called the Rule of Cancellation.

17/22



flip it (@a->b->¢c) >b->a->c
flipfxy =fyx

@ The £1ip function takes a function £ x y (£ is the function
and x and y its two arguments, and reorders the arguments!

o Or, more correctly, flip returns a new function £ y X.

@ You can use this when you want to specialize a function by
supplying an argument, but the function takes its arguments
in the “wrong order.”

18/22



@ Consider the (!!) function, for example:

> :type (11)

(1) :: [a]l -> Int -> a

> :type flip(!!)

flip (!!) :: Int -> [a] -> a
> (') [1..10] 2

3

> (flip (!'1)) 2 [1..10]

3

Now you can write a function £ifth using (!'!) which
returns the fifth element of a list:
fifth :: [a] -> a

fifth = (flip (11)) 5

19/22



Exercise

@ Define an operator $$ so that x $$ xs returns True if x is an
element in xs, and False otherwise.

Example:

7 4 %% [1,2,5,6,4,7]
True

? 4 $$ [1,2,3,5]
False

7 4 8% [

False

20/22



Exercise

@ Define an function drop3 which takes a list as argument and
returns a new list with the first three elements removed.

@ Use currying!

21/22



Exercise

> :type elem
elem :: Eq a => a -> [al] -> Bool
> elem 3 [1..10]

@ The elem function returns true if the first argument is a
member of the second (a list).

@ Write a function has3 xs which returns true if xs (a list)
contains the number 3.

@ Write a function isSmallPrime x which returns true if x is
one of the numbers 2,3,5,7.

@ Use currying!

> isSmallPrime 2
True
> has3 [1]
False
22/22



