
Monads

Source

Sept. 20 2024

https://pusheen.com/423-2/

Monads

Source

http://ozark.hendrix.edu/~yorgey/misc.html
http://ozark.hendrix.edu/~yorgey/misc.html

Burritos

• Monads are like burritos

• Monads are not like burritos

https://blog.plover.com/prog/burritos.html
https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/

Burritos

• Monads are like burritos

• Monads are not like burritos

https://blog.plover.com/prog/burritos.html
https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

Sequencing Actions

1. Get a line

2. Get a line

3. Print the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

Sequencing Actions

1. Get a line

2. Get a line

3. Print the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

print $ a ++ b

= (++) <$> getLine <*> getLine

Sequencing Actions

1. Get a line

2. Get a line

3. Print the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

print $ a ++ b

• How to write this in applicative style?

Sequencing Actions

1. Get a line

2. Get a line

3. Print the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

print $ a ++ b

= (++) <$> getLine <*> getLine

• Actions

Sequencing Actions

1. Get a line

2. Get a line

3. Print the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

print $ a ++ b

= (++) <$> getLine <*> getLine

• What to do with the results

Sequencing Actions

1. Get a line

2. Get a line

3. Print the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

print $ a ++ b

myAction’ = (\x y -> print $ x ++ y)

<$> getLine <*> getLine

• Why doesn’t this work?

Sequencing Actions

1. Get a line

2. Get a line

3. Print the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

print $ a ++ b

myAction’ = (\x y -> print $ x ++ y)

<$> getLine <*> getLine

• Why doesn’t this work?

Sequencing Actions

• (\x y -> print $ x ++ y) <$> getLine <*> getLine

• Get a line a, apply (\x y -> print $ x ++ y) to a

(to get (\y -> print $ a ++ y)), and wrap it up in
an IO box

Sequencing Actions

• (\x y -> print $ x ++ y) <$> getLine <*> getLine

• Get a line a, apply (\x y -> print $ x ++ y) to a

(to get (\y -> print $ a ++ y)), and wrap it up in
an IO box
• Take (\y -> print $ a ++ y) out of the box, get
another line b, apply (\y -> print $ a ++ y) to b (to
get print $ a ++ b), and wrap it up in another IO box

Sequencing Actions

• (\x y -> print $ x ++ y) <$> getLine <*> getLine

• Get a line a, apply (\x y -> print $ x ++ y) to a

(to get (\y -> print $ a ++ y)), and wrap it up in
an IO box
• Take (\y -> print $ a ++ y) out of the box, get
another line b, apply (\y -> print $ a ++ y) to b (to
get print $ a ++ b), and wrap it up in another IO box
• We never actually ran print $ a ++ b!

• myAction :: IO ()

• myAction’ :: IO (IO ())

• To run print $ a ++ b, we need to take it out of the
box

Sequencing Actions

• (\x y -> print $ x ++ y) <$> getLine <*> getLine

• Get a line a, apply (\x y -> print $ x ++ y) to a

(to get (\y -> print $ a ++ y)), and wrap it up in
an IO box
• Take (\y -> print $ a ++ y) out of the box, get
another line b, apply (\y -> print $ a ++ y) to b (to
get print $ a ++ b), and wrap it up in another IO box
• We never actually ran print $ a ++ b!

• myAction :: IO ()

• myAction’ :: IO (IO ())

• To run print $ a ++ b, we need to take it out of the
box

Sequencing Actions

• (\x y -> print $ x ++ y) <$> getLine <*> getLine

• Get a line a, apply (\x y -> print $ x ++ y) to a

(to get (\y -> print $ a ++ y)), and wrap it up in
an IO box
• Take (\y -> print $ a ++ y) out of the box, get
another line b, apply (\y -> print $ a ++ y) to b (to
get print $ a ++ b), and wrap it up in another IO box
• We never actually ran print $ a ++ b!

• myAction :: IO ()

• myAction’ :: IO (IO ())

• To run print $ a ++ b, we need to take it out of the
box

Sequencing Actions

• (\x y -> print $ x ++ y) <$> getLine <*> getLine

• Get a line a, apply (\x y -> print $ x ++ y) to a

(to get (\y -> print $ a ++ y)), and wrap it up in
an IO box
• Take (\y -> print $ a ++ y) out of the box, get
another line b, apply (\y -> print $ a ++ y) to b (to
get print $ a ++ b), and wrap it up in another IO box
• We never actually ran print $ a ++ b!

• myAction :: IO ()

• myAction’ :: IO (IO ())

• To run print $ a ++ b, we need to take it out of the
box

Monads

• Wikipedia: Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T : C → C together with two natural transformations:
η : 1C → T (where 1C denotes the identity functor on C) and
µ : T 2 → T (where T 2 is the functor T ◦ T from C to C).

Monads

• Wikipedia: Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T : C → C together with two natural transformations:
η : 1C → T (where 1C denotes the identity functor on C) and
µ : T 2 → T (where T 2 is the functor T ◦ T from C to C).

• Remember categories:

• category = objects + morphisms

• objects = types
• morphisms = functions

Monads

• Wikipedia: Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T : C → C together with two natural transformations:
η : 1C → T (where 1C denotes the identity functor on C) and
µ : T 2 → T (where T 2 is the functor T ◦ T from C to C).

• Remember categories:

• category = objects + morphisms

• objects = types
• morphisms = functions

Monads

• Wikipedia: Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T : C → C together with two natural transformations:
η : 1C → T (where 1C denotes the identity functor on C) and
µ : T 2 → T (where T 2 is the functor T ◦ T from C to C).

• endofunctor = functor that maps a category to that
same category

• Our only category is Hask, so all functors are
endofunctors

Monads

• Wikipedia: Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T : C → C together with two natural transformations:
η : 1C → T (where 1C denotes the identity functor on C) and
µ : T 2 → T (where T 2 is the functor T ◦ T from C to C).

• endofunctor = functor that maps a category to that
same category

• Our only category is Hask, so all functors are
endofunctors

Monads

• Wikipedia: Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T together with two natural transformations:
η : 1C → T (where 1C denotes the identity functor on C) and
µ : T 2 → T (where T 2 is the functor T ◦ T from C to C).

• natural transformation = morphism of functors

• Let us call η unit (or return), and µ join

• If Haskell syntax allowed it, we could say
return :: Identity -> T and
join :: T2 -> T

Monads

• Wikipedia: Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T together with two natural transformations:
η : 1C → T (where 1C denotes the identity functor on C) and
µ : T 2 → T (where T 2 is the functor T ◦ T from C to C).

• natural transformation = morphism of functors

• Let us call η unit (or return), and µ join

• If Haskell syntax allowed it, we could say
return :: Identity -> T and
join :: T2 -> T

Monads

• Wikipedia: Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T together with two natural transformations:
η : 1C → T (where 1C denotes the identity functor on C) and
µ : T 2 → T (where T 2 is the functor T ◦ T from C to C).

• natural transformation = morphism of functors

• Let us call η unit (or return), and µ join

• If Haskell syntax allowed it, we could say
return :: Identity -> T and
join :: T2 -> T

Monads

• Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T together with two natural transformations:
return :: a -> T a and
join :: T (T a) -> T a.

Sequencing Actions

• myAction’ :: IO (IO ())

• join myAction’ :: IO ()

• Prelude Control.Monad> join myAction’

the

dog

"the dog"

Sequencing Actions

• myAction’ :: IO (IO ())

• join myAction’ :: IO ()

• Prelude Control.Monad> join myAction’

the

dog

"the dog"

Sequencing Actions

• myAction’ :: IO (IO ())

• join myAction’ :: IO ()

• Prelude Control.Monad> join myAction’

the

dog

"the dog"

Sequencing Actions

• myAction’ :: IO (IO ())

• join myAction’ :: IO ()

• Prelude Control.Monad> join myAction’

the

dog

"the dog"

Sequencing Actions

• myAction’ :: IO (IO ())

• join myAction’ :: IO ()

• Prelude Control.Monad> join myAction’

the

dog

"the dog"

Sequencing Actions

• myAction’ :: IO (IO ())

• join myAction’ :: IO ()

• Prelude Control.Monad> join myAction’

the

dog

"the dog"

Monads

• class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= \ -> y

fail :: String -> m a

fail msg = error msg

Monads

• class (Applicative m) => Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= \ -> y

fail :: String -> m a

fail msg = error msg

• Since GHC v7.10, Applicative is a superclass of Monad

Monads

• class (Applicative m) => Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= \ -> y

fail :: String -> m a

fail msg = error msg

• What happened to join? What are (>>=), (>>), and
fail doing here?

Monads

• (>>=) :: m a -> (a -> m b) -> m b

• (=<<) = flip (>>=)

(=<<) :: (a -> m b) -> m a -> m b

• (<*>) :: f (a -> b) -> f a -> f b

• (<$>) :: (a -> b) -> f a -> f b

• (=<<) (and (>>=)) are maps for monadic functions

• Functions that create their own boxes

Monads

• (>>=) :: m a -> (a -> m b) -> m b

• (=<<) = flip (>>=)

(=<<) :: (a -> m b) -> m a -> m b

• (<*>) :: f (a -> b) -> f a -> f b

• (<$>) :: (a -> b) -> f a -> f b

• (=<<) (and (>>=)) are maps for monadic functions

• Functions that create their own boxes

Monads

• (>>=) :: m a -> (a -> m b) -> m b

• (=<<) = flip (>>=)

(=<<) :: (a -> m b) -> m a -> m b

• (<*>) :: f (a -> b) -> f a -> f b

• (<$>) :: (a -> b) -> f a -> f b

• (=<<) (and (>>=)) are maps for monadic functions

• Functions that create their own boxes

Monads

• (>>=) :: m a -> (a -> m b) -> m b

• (=<<) = flip (>>=)

(=<<) :: (a -> m b) -> m a -> m b

• (<*>) :: f (a -> b) -> f a -> f b

• (<$>) :: (a -> b) -> f a -> f b

• (=<<) (and (>>=)) are maps for monadic functions

• Functions that create their own boxes

Monads

• (>>=) :: m a -> (a -> m b) -> m b

• (=<<) = flip (>>=)

(=<<) :: (a -> m b) -> m a -> m b

• (<*>) :: f (a -> b) -> f a -> f b

• (<$>) :: (a -> b) -> f a -> f b

• (=<<) (and (>>=)) are maps for monadic functions

• Functions that create their own boxes

Monads

• (>>=) :: m a -> (a -> m b) -> m b

• (=<<) = flip (>>=)

(=<<) :: (a -> m b) -> m a -> m b

• (<*>) :: f (a -> b) -> f a -> f b

• (<$>) :: (a -> b) -> f a -> f b

• (=<<) (and (>>=)) are maps for monadic functions

• Functions that create their own boxes

Monads

• (>>=) :: m a -> (a -> m b) -> m b

• (=<<) = flip (>>=)

(=<<) :: (a -> m b) -> m a -> m b

• (<*>) :: f (a -> b) -> f a -> f b

• (<$>) :: (a -> b) -> f a -> f b

• (=<<) (and (>>=)) are maps for monadic functions

• Functions that create their own context

Monads

• g >>= f = join (fmap f g) :: m a -> (a -> m b) -> m b

• f :: a -> m b is a monadic function
• fmap f lifts it to type m a -> m (m b)

• g :: m a is a value of type a in a box
• fmap f g :: m (m b) outputs a value of type b in two

nested boxes
• join (fmap f g) extracts a monadic value of type m b from

the outermost box

Monads

• g >>= f = join (fmap f g) :: m a -> (a -> m b) -> m b

• f :: a -> m b is a monadic function

• fmap f lifts it to type m a -> m (m b)

• g :: m a is a value of type a in a box
• fmap f g :: m (m b) outputs a value of type b in two

nested boxes
• join (fmap f g) extracts a monadic value of type m b from

the outermost box

Monads

• g >>= f = join (fmap f g) :: m a -> (a -> m b) -> m b

• f :: a -> m b is a monadic function
• fmap f lifts it to type m a -> m (m b)

• g :: m a is a value of type a in a box
• fmap f g :: m (m b) outputs a value of type b in two

nested boxes
• join (fmap f g) extracts a monadic value of type m b from

the outermost box

Monads

• g >>= f = join (fmap f g) :: m a -> (a -> m b) -> m b

• f :: a -> m b is a monadic function
• fmap f lifts it to type m a -> m (m b)

• g :: m a is a value of type a in a box

• fmap f g :: m (m b) outputs a value of type b in two
nested boxes

• join (fmap f g) extracts a monadic value of type m b from
the outermost box

Monads

• g >>= f = join (fmap f g) :: m a -> (a -> m b) -> m b

• f :: a -> m b is a monadic function
• fmap f lifts it to type m a -> m (m b)

• g :: m a is a value of type a in a box
• fmap f g :: m (m b) outputs a value of type b in two

nested boxes

• join (fmap f g) extracts a monadic value of type m b from
the outermost box

Monads

• g >>= f = join (fmap f g) :: m a -> (a -> m b) -> m b

• f :: a -> m b is a monadic function
• fmap f lifts it to type m a -> m (m b)

• g :: m a is a value of type a in a box
• fmap f g :: m (m b) outputs a value of type b in two

nested boxes
• join (fmap f g) extracts a monadic value of type m b from

the outermost box

Monads

• g >>= f = join (fmap f g) :: m a -> (a -> m b) -> m b

• f :: a -> m b is a monadic function
• fmap f lifts it to type m a -> m (m b)

• g :: m a is a value of type a in a box
• fmap f g :: m (m b) outputs a value of type b in two

nested boxes
• g >>= f extracts a value of type a from g and feeds it to f to

get a monadic value of type m b

• join x = x >>= id

Monads

• g >>= f = join (fmap f g) :: m a -> (a -> m b) -> m b

• f :: a -> m b is a monadic function
• fmap f lifts it to type m a -> m (m b)

• g :: m a is a value of type a in a box
• fmap f g :: m (m b) outputs a value of type b in two

nested boxes
• g >>= f extracts a value of type a from g and feeds it to f to

get a monadic value of type m b

• join x = x >>= id

Monads

• class (Applicative m) => Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= \ -> y

fail :: String -> m a

fail msg = error msg

• Shorthand for when we don’t need to bind the value
inside x to evaluate y

Monads

• class (Applicative m) => Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= \ -> y

fail :: String -> m a

fail msg = error msg

• Error handler for pattern matching in do expressions

