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Monads

• Throughout this article C denotes a category.
A monad on C consists of an endofunctor
T together with two natural transformations:
return :: a -> T a and
join :: T (T a) -> T a.
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Monads

• class (Applicative m) => Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= \ -> y

fail :: String -> m a

fail msg = error msg

• What happened to join? What are (>>=), (>>), and
fail doing here?
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• Error handler for pattern matching in do expressions


