
What is it to know a language?

Syntax: which structures are in L, and how they’re built.

Semantics: how structures in L are systematically associated with meaning.

Semantics is difficult, in part, because meaning is both multi- and high-dimensional:

environment dependence

nondeterministic

at-issue and not-at-issue,

contrastive

stateful

quantificational/scopal, . . .

Today:

motivate analogies between semantics and functional programming

introduce Functors to model dimensions of meaning resembling side effects

in programming
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Two ways syntax matters

Only some strings of words are recognizably part of (e.g.) English:

1. *Matt devoured the donut.

2. *Matt donut the devoured.

3. *Matt devoured the donut Mary.

And some strings can be understood in multiple ways:

4. *Mary saw the kestrel with the binoculars.

e

Mary e→ e→ t

saw (e→ t)→ e

the e→ t

kestrel

e→ t

with the binos

e

Mary

e→ e→ t

saw (e→ t)→ e

the

e→ t

kestrel

e→ t

with the binos

We’ll assume that this much syntax is provided for us
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An arithmetic language and evaluator in Haskell

-- Syntax: wffs are those that typecheck as Term's

data Term = Lit Int | Term :+: Term | Term :*: Term

exp1 :: Term

exp1 = Lit 1 :+: (Lit 2 :*: Lit 3)

exp2 :: Term

exp2 = (Lit 1 :+: Lit 2) :*: Lit 3

-- Semantics: (recursively) evaluating terms

eval :: Term -> Int

eval (Lit x) = x

eval (a :+: b) = (eval a) + (eval b)

eval (a :*: b) = (eval a) * (eval b)

-- eval exp1 = 7

-- eval exp2 = 9
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Types and (higher-order) functions

If you ask the Haskell interpreter about the types of the addition operations:

GHCi> :type (+)

(+) :: Int -> Int -> Int

GHCi> :type (:+:)

(:+:) :: Term -> Term -> Term

This says that (+) is needs one Int, and then another, in order to produce an Int

Likewise, the term constructor :+: needs one Term, and then another, in order to

produce an Int

So + is a function — a recipe for turning inputs to outputs — and it takes its

inputs one at a time, making it higher-order.

Functions represented with λ-calculus: if f(x) = x2, we write f as λx.x2.
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Term construction and evaluation

Term

Lit 1 :+: (Lit 2 :*: Lit 3)

Term→ Term

λy.Lit 1 :+:y

Term

Lit 1

Term→ Term→ Term

λx.λy.x :+:y

Term

Lit 2 :*: Lit 3

Term→ Term

λy.Lit 2 :*:y

Term

Lit 2

Term→ Term→ Term

λx.λy.x :*:y

Term

Lit 3

Int

1+ (2∗ 3)

Int→ Int

λy.1+y

Int

1

Int→ Int→ Int

λx.λy.x +y

Int

2∗ 3

Int→ Int

λy.2∗y

Int

2

Int→ Int→ Int

λx.λy.x ∗y

Int

3

Term evaluation is compositional, homomorphic.
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A baseline (extensional) semantic theory

Start with some basic types, and then ascend:1

τ ::= e | t | τ → τ︸ ︷︷ ︸
e→t, (e→t)→t, ...

Interpret binary combination via application

Function Application

If a node γ has two daughters

1. α of type σ, and

2. β of type σ→ τ,

then γ has type τ, and �γ� = �β� �α�

τ

�β� �α�

γ

σ

�α�

α

σ→ τ
�β�

β

τ

�β� �α�

γ

σ→ τ
�β�

β

σ

�α�

α

1 e and t are the ι and o of Church’s original Simple Theory of Types.
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A couple examples

t

sawap

e

p

Polly

e→ t

sawa

e→ e→ t

saw

saw

e

a

Anna

t

found(ιdog)(ιcat)

e

ιcat

(e→ t)→ e

ι

the

e→ t

cat

cat

e→ t

found(ιdog)

e→ e→ t

found

found

e

ιdog

(e→ t)→ e

ι

the

e→ t

dog

dog
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Running with Function Application

New words and constructions can always be assigned new denotations that fit into

this picture

t

slowsmilej

e

j

John

e→ t

e→ t

smile

smiled

(e→ t)→ (e→ t)

slow

slowly

t

smilej∧¬blinkj

e

j

John

e→ t

λx.smilex ∧¬blinkx

e→ t

smile

smiled

(e→ t)→ (e→ t)

λpλx.px ∧¬blinkx

(e→ t)→ (e→ t)→ (e→ t)

λqλpλx.px ∧¬(qx)

without

e→ t

blink

blinking

9



Running with Function Application

New words and constructions can always be assigned new denotations that fit into

this picture

t

slowsmilej

e

j

John

e→ t

e→ t

smile

smiled

(e→ t)→ (e→ t)

slow

slowly

t

smilej∧¬blinkj

e

j

John

e→ t

λx.smilex ∧¬blinkx

e→ t

smile

smiled

(e→ t)→ (e→ t)

λpλx.px ∧¬blinkx

(e→ t)→ (e→ t)→ (e→ t)

λqλpλx.px ∧¬(qx)

without

e→ t

blink

blinking

9



Running with Function Application

New words and constructions can always be assigned new denotations that fit into

this picture

t

slowsmilej

e

j

John

e→ t

e→ t

smile

smiled

(e→ t)→ (e→ t)

slow

slowly

t

smilej∧¬blinkj

e

j

John

e→ t

λx.smilex ∧¬blinkx

e→ t

smile

smiled

(e→ t)→ (e→ t)

λpλx.px ∧¬blinkx

(e→ t)→ (e→ t)→ (e→ t)

λqλpλx.px ∧¬(qx)
without

e→ t

blink

blinking

9



Stress test

Occasionally though, new configurations with already-analyzed language can lead

to type clashes

t

happyj

e

j

John

e→ t

happy

(e→ t)→ (e→ t)

λp.p

is

e→ t

happy

happy

e

(e→ t)→ e

ι

the

. . .

e→ t

happy

happy

e→ t

cat

cat
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New modes of combination

If the discrepancy is systematic enough, it can lead to proposals for additional

modes of combination, e.g.,

Predicate Modification

If a node γ has two daughters

1. α of type σ→ t, and

2. β of type σ→ t,

then γ has type σ→ t, and

�γ� = �β� ⊓ �α�

s→ t

�α�⊓ �β�
γ

σ→ t

�α�

α

σ→ t

�β�

β

e

ι(happy⊓ cat)

(e→ t)→ e

ι

the

e→ t

happy⊓ cat

e→ t

happy

happy

e→ t

cat

cat
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Type-driven composition

This brings us to more or less the standard picture (Klein & Sag 1985, Heim &

Kratzer 1998):

denotations built from a few basic kinds of objects, and functions over them

a few basic modes of combination, with composition determined by types

�A B� ::=



�A��B� if A :: σ→ τ, B :: σ fa

�B��A� if A :: σ, B :: σ→ τ ba

�A�∩ �B� if A,B :: σ→ t pm

�A� ◦ �B� if A :: τ→ υ, B :: σ→ τ fc

�B� ↾ �A� if A :: σ→ t, B :: σ→ τ→ t pr

. . . if . . . . . .
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D(e)riving with types

t

meow(ι(tallest(happy⊓ cat)))

e

ι(tallest(happy⊓ cat))

(e→ t)→ e

(e→ t)→ e

the

(e→ t)→ (e→ t)

tallest

tallest

e→ t

happy⊓ cat

e→ t

happy

happy

e→ t

cat

cat

e→ t

meow

meowed

ba

fa

fc

pm
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Effects
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More than just an e

This framework is extremely flexible, but some expressions seem to have too much

meaning to fit into the sensible types

The most famous example of this comes from quantificational noun phrases

t

e

Mary

e→ t

e→ e→ t

called

e

John

t

e

Mary

e→ t

e→ e→ t

called

e

no one

All reason suggests that ‘no one’ should have type e — it goes everywhere that

‘John’ goes — but there is no x s.t. �no one� = x
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More than just an e

The same same might be said of interrogative noun phrases, like ‘who’

t

e

Mary

e→ t

e→ e→ t

called

e

John

t

e

Who

e→ t

e→ e→ t

called

e

John

These clearly saturate the same argument positions as ordinary names, but clearly

don’t refer to any particular entity
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More than just an e

Less obviously, indefinite noun phrases like ‘a student’ seem to play the same

compositional role as ordinary NPs

But like ‘wh’-words and quantifiers, they too clearly don’t name particular entities

Yet, unlike those extraordinary NPs, we do refer back to them as if they were names

1. Mary called. She was upset.

2. Someone called. She was upset.

3. # Everyone called. She was upset.

For that matter, pronouns are also very much like entity-like, without having stable

referents. Indexicals too.

4. John saw her/me.
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More than just an e

Definite descriptions also seem for all intents and purposes to denote entities . . .

5. The two people teaching this class are American.

. . . except when they don’t.

6. The three people teaching this class are American.
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More than just an e

With a bit of prosodic focus, any noun phrase can be made to contribute more to

what is said than its mere referent.

7. I only talked to John’s sister.

8. I only talked to JOHN’s sister.

Or you can always supplement the noun phrase with an apposition.

9. I talked to Mary, a first-year student.

Yet neither the focus nor the appositive change what kind of argument position the

NP satisfies
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Side Effects

All of these expressions have an outsized semantics relative to their compositional

role, which is just that of an ordinay entity, e.

In this class we will take the view that these semantic enrichments should be

treated as (side) effects of their evaluation

The inspiration here is from programming language theory

Pronouns and pronominal binding

Questions/‘inquisitive’ meanings

Focus

Presupposition

Supplemental content

Quantification

Variable management

Nondeterministic computation

Cellular automata

Throwing and catching errors

Logging/execution traces

Control flow (jumps, aborts, loops)
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Pure vs impure

For instance, consider a simple sort of program that changes the value of a variable

while performing a computation

i = 0

print(i)

while i < 10:

i += 1

print(i)

Here the meaning of the variable i depends on where in the program it is evaluated;

it is in this sense impure

Haskell, like the lambda calculus and your typical natural language semantics, is

pure: denotations are fixed, total functions from inputs to outputs.

How then can we think about the meanings of expressions that access and

manipulate values in memory?
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Effects and types

In both natural language semantics and functional programming, a guiding

principle is that denotations should be referentially transparent

One facet of this is that if an expression’s denotation isn’t (merely) an entity, then

its type can’t (merely) be e

So a natural place to start is to decide what kinds of objects, and what kinds of

types, these special NPs have
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Algebraic Data Types

Some of these effects seem to call for denotations with multiple dimensions of

meaning

Sassy, a cat :: e× t

�Sassy, a cat� = ⟨s, cat s⟩

Other effects seem to call for denotations with multiple variants of meaning

the cat :: e | #

�the cat� = x if cat = {x} else #

Types built from these products, sums, and functions are called Algebraic Data

Types
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Some natural choices

Here are some other natural choices for effect types

Expression Type Denotation

no cat (e→ t)→ t λc.¬∃x.catx ∧ cx
which cat {e} {x | catx}
a cat s→ {e× s} λs.{⟨x, s++x⟩}
the cat e | # x if cat = {x} else #

SASSY e× {e} ⟨s, {x | x ∈ De}⟩
Sassy, a cat e× t ⟨s, cats⟩
she r→ e λg.g0
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Some natural choices

Here are some other natural choices for effect types

Expression Type Denotation

no cat (e -> Bool) -> Bool λc.¬∃x.catx ∧ cx
which cat [e] {x | catx}
a cat s -> [(e, s)] λs.{⟨x, s++x⟩}
the cat e|# x if cat = {x} else #

SASSY (e, [e]) ⟨s, {x | x ∈ De}⟩
Sassy, a cat (e, Bool) ⟨s, cats⟩
she r -> e λg.g0
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Functors

Notice that in all of these, we have an e situated in some kind of structural context

Expression Type

no cat (

e

-> Bool) -> Bool

which cat [

e

]

a cat s -> [(

e

, s)]

the cat

e

|#

SASSY (

e

, [

e

])

Sassy, a cat (

e

, Bool)

she r ->

e

These structural contexts are known in the Category- and Programming-Theory

literatures as Functors
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Functor examples

Formally, we might think of a Functor as a function from types to types, e.g.

F(α) = α× t

As it happens, many of the particular Functors in our table already have

idiosyncratic names (or at least close approximations) in Haskell

Mathematical Type Haskell Type

(e→ t)→ t data Cont t a = Cont ((a -> t) -> t)

{e} data [] a = [a]

s→ {e× s} data State s a = State (s -> (a,s))

e | # data Maybe a = Just a | Nothing

e× t data Writer t a = Writer a t

r→ e data Reader r a = Reader (r -> a)

e× {e} --

27



Functorial operations

However, not every function from types to types is a functor

The value(s) of type α hiding in the structure F(α) must be, intuitively speaking,

accessible to other operations

For instance, say you have a set of numbers, and a function to update those

numbers

S = {1,2,3} f = λn.n+ 1

We can modify the numbers in S by mapping f over the contents of S

S′ = {f n | n ∈ S} = {f 1, f 2, f 3} = {2,3,4}

We would do the same thing if we started with a set of strings and wanted to

update them by adding some text

S = {"a", "b", "c"} f = λm.m++"d"

S′ = {f m |m ∈ S} = {f "a", f "b", f "c"} = {"ad", "bd", "cd"}
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Functorial operations

Similarly if we have a number paired with a message, we can still easily modify the

number by projecting it out and then pairing it back up

P = ⟨7, "hello"⟩ f = λn.n+ 1

P ′ = ⟨f P0, P1⟩ = ⟨f 7, "hello"⟩ = ⟨8, "hello"⟩

And again, we would do the same thing no matter what kind of data was stored in P

P = ⟨true, "hello"⟩ f = λb.¬b

P ′ = ⟨f P0, P1⟩ = ⟨f true, "hello"⟩ = ⟨false, "hello"⟩
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No functorial operations

It might seem like this is trivial, but not every structural context guarantees

accessibility like this

For instance, let an N(α) be the type of a function that converts αs to numbers N

Mathematical Type Haskell Type

N(α) = α→N data Encode a = Encode (a -> Int)

Intuitively, there’s no obvious sense in which something of type N(α) is “storing”

any αs in an accessible way

And indeed, imagine you have your hands on some function E :: N(t), together with

a function f that can modify truth values; there’s no way to use f to update E

E = λb. if b then 1 else 0 f = λb.¬b

E′ = . . . f . . . E . . . ???
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Functor laws

Technically, a type constructor F is a Functor if there is some operation

• :: (a→ b)→ F(a)→ F(b)

that will map a function k :: a→ b over a structure F(a), yielding an F(b)

In Haskell, this operation is called fmap

class Functor f where

fmap :: (a -> b) -> f a -> f b

Moreover, the function should be reasonably well-behaved, satisfying the following

two principles:

Identity: id •M = M
Composition (f ◦ g) •M = (f • (g •M))
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Functor instances

For most Functors, these instances pretty much write themselves

W(α) ::= α× t

k • ⟨a,b⟩ = ⟨ka,b⟩

S(α) ::= {α}

k • S = {ka | a ∈ S}

data Writer p a = Writer a p

instance Functor (Writer p) where

fmap k (Writer a p) = Writer (k a) p

data [] a = [a]

instance Functor [] where

fmap k as = [k a | a <- as]

In fact, it is literally impossible to write an instance of fmap that does not satisfy

the Composition law (Wadler 1989)
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Functor instances

data Maybe a = Just a | Nothing

instance Functor Maybe where

fmap k m = case m of Nothing -> Nothing

Just a -> Just (k a)

You can, however, if you try, write an fmap that does not satisfy Identity

data Maybe a = Just a | Nothing

instance Functor Maybe where

fmap k m = case m of Nothing -> Nothing

Just a -> Nothing

fmap id (Just 3)

== case (Just 3) of Nothing -> Nothing

Just a -> Nothing

== Nothing

/= (Just 3)
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Functor instances

data Reader r a = Reader (r -> a)

instance Functor (Reader r) where

fmap k (Reader m) = Reader ...

(\r -> k (m r))

With a little effort . . .

data Cont t a = Cont ((a -> t) -> t)

instance Functor (Cont t) where

fmap k (Cont m) = Cont (\c -> m (\a -> c (k a)))
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Denotations in Functors

With these Functors in hand, we might rewrite our denotational table

Expression Type Denotation

no cat Ce ::= (e→ t)→ t λc.¬∃x.catx ∧ cx
the cat Me ::= e | # x if cat = {x} else #

Sassy, a cat We ::= e× t ⟨s, cats⟩
she Re ::= r→ e λg.g0
which cat Se ::= {e} {x | catx}
SASSY Fe ::= e× {e} ⟨s, {x | x ∈ De}⟩
a cat De ::= s→ {e× s} λs.{⟨x, s++x⟩ | catx}
. . . . . . . . .

The type constructors bring out the sense in which all of these expressions

essentially contribute type-e meanings, but also trigger particular effects
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Composition again

Recall the problem we started with was that these effectful bits of language need to

slot in where no effect is expected

Se

which cat

e→ t

meowed

How does knowing that S is a Functor help? Well, we can now apply fmap to turn

the VP into a function expecting an Se instead of an ordinary e

St

meow • {x | catx}

Se

{x | catx}
which cat

Se→ St

λS.meow • S

e→ t

meow

meowed

•
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Composition some more

And of course the same strategy will work for any Functorial effect

Mt

meow • (x if cat = {x} else #)

= (meowx) if cat = {x} else #

Me

x if cat = {x} else #

the cat

Me→ Mt

λE.meow • E

e→ t

meow

meowed

•

Rt

meow • λg.g0

= λg.meowg0

Re

λg.g0
she

Re→ Rt

λE.meow • E

e→ t

meow

meowed

•

Wt

meow • ⟨s, cats⟩

= ⟨meows, cats⟩

We

⟨s, cats⟩
Sassy, a cat

We→ Wt

λE.meow • E

e→ t

meow

meowed

•
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Composition in more positions

Note that it is no more difficult to compose a verb with an effectful object than it

has been with an effectful subject

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λE.see • E

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat
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Composition in more problematic positions

However, there is a problem combining an effectful VP with an ordinary subject

e

m

Mary

W(e→ t)

see • ⟨s, cats⟩
= ⟨sees, cats⟩

We→ W(e→ t)

λE.see • E

e→ e→ t

see

saw

We

⟨s, cats⟩
Sassy, a cat•

Remember that (•) combines an ordinary function k :: a→ b with an effectful

argument E :: Fa, but we have the opposite
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Lifting

To proceed, we might simply lean on the oldest trick in the semanticist’s book:

invert the function-argument relationship

Expression Type Denotation

lift a→ (a→ b)→ b λxλc.cx

With this, the ordinary argument

becomes the ordinary function, and the

effectful function becomes the effectful

argument

So we fmap once more

Wt

(λc.cm) • ⟨sees, cats⟩
= ⟨seesm, cats⟩

W(e→ t)→ Wt

λE.(λc.cm) • E

(e→ t)→ t

λc.cm

e

m

Mary

e→ (e→ t)→ t

λxλc.cx

lift

W(e→ t)

⟨sees, cats⟩

saw Sassy, a cat

•
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Percolation

With what we have so far, it’s easy to see that an effectful type anywhere in a

derivation taints everything above it (the effect percolates upward)

Particularly eyebrow-raising perhaps is the case of quantificational expressions

Ct

meow • (λc.¬∃x.catx ∧ cx)
= λc.¬∃x.catx ∧ c (meowx)

Ce

λc.¬∃x.catx ∧ cx
no cat

Ce→ Ct

λE.meow • E

e→ t

meow

meowed

•
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Association with effects

In some cases, there are expressions that associate with effects, taking an effectful

meaning as argument and returning something pure

Expression Type Denotation

only F(e→ t)→ e→ t λ⟨P,C⟩λx.{Q ∈ C | Qx} = {P}

e→ t

λx.{seez | z ∈ De,seezx} = {seem}

F(e→ t)→ e→ t

only

F(e→ t)

Fe→ F(e→ t)

e→ e→ t

saw

Fe

MARY•
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Types ending in t

In other cases, a truth value may be extracted from an effectful meaning in virtue of

some broader linking hypothesis about how the data structure relates to truth.

These extraction procedures are sometimes called closure, or lowering, operators,

which we might write ■H :: Ht→ t.

A sentence with an environmental dependency is true if it is true in the

utterance context (cf. Kaplan 1979)

■R = λv.v gc
A sentence with a supplement is true only if both of its dimensions are true

(cf. Boër & Lycan 1976)

■W = λ⟨p,q⟩.p ∧ q
A sentence with a presupposition is true only if it is defined and not false

(cf. the A-ssertion operator of trivalent logics like Beaver & Krahmer 2001)

■M = λm.false if m = # else m

A sentence that evokes many alternatives is true only if one of them is true

(cf. Existential Closure, as in Kratzer & Shimoyama 2002)

■S = λS.
∨
S
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Closing over continuations

For our scope-taking effect C, the standard closure operator is to run the denotation

with a trivial identity continuation (Barker 2002): ■C = λT .T id

t

¬∃x.catx ∧ id(meowx)

= ¬∃x.catx ∧meowx

Ct→ t

λT .T id

■C

Ct

meow • (λc.¬∃x.catx ∧ cx)
= λc.¬∃x.catx ∧ c (meowx)

Ce

λc.¬∃x.catx ∧ cx
no cat

Ce→ Ct

λE.meow • E

e→ t

meow

meowed

•
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Effects upon effects

We end with a challenge and a teaser for tomorrow: how to proceed with multiple,

independent effectful components in the same derivation?

???

Re

λg.g0
she

R(e→ t)

call • (λg.momg0)

λg.call(momg0)

Re→ R(e→ t)

λE.callE

e→ e→ t

call

called

Re

mom • (λg.g0)
λg.momg0

Re

λg.g0
her

Re→ Re

λE.mom • E

e→ e

mom

mom

•

•
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