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Applications of rhod/ logic

Modal logic is a family of studies of modal notions with a unifying
mathematical meta-theory.

philosophy logic of possibility and necessity, epistemic (knowledge)
and deontic (obligation) logics
linguistics tense logic
economics game theory
mathematics provability logic, relational algebras

comp. sci. temporal logic, dynamic logic
automated soft- and hardware verification
Al epistemic logic, temporal logic
representing and reasoning about space and time,
modelling complex interactive multi-agent systems



* Review: Propositional Logic (PL), Predicate Logic (FOL), Proof Theories

* Syntax and Semantics of Basic Modal Logic (PML) for propositions
* Temporal Modal Logics: LTL, CTL, Interval Temporal Logic

* Dynamic/Action Logics: PDL, DEL, PAL, AL-STIT

 Spatial Logics: SML, RCC8

* Epistemic Logics: S4, K45, DEL,

e Deontic Logics: SDL, Deontic STIT, Multi-agent DL

* Counterfactual Logics: Lewi—Stalnaker Logic, Pearl Causal Model
* Translations: AMR, AVM, graphs into Modal structures



Learning Goals for the Course
* Understand why Modal Logic is important —it’s everywhere!

* To encode and interpret linguistic, cognitive, and computational
problems as modal relational structures

* To identify computational properties of the language used for
modeling the problem (decidability, soundness, completeness)



Topics in this class

Slides thanks to: Eric Pacuit, Patrick Blackburn, Valentine Goranko, and

the “Logic in Action” course

sl S

Propositional Modal Logic

First-Order Modal Logic

Non-Normal Modal Logics

Applications: (Dynamic) Epistemic Logic, Epistemic Temporal
Logic, Logics of Knowledge and Ability



Setting the stage: Classical logic

Propositional Logic (PL)
» Language: PAQ, P — (QV —R), etc.
» Proof-Theory: Natural Deduction, Hilbert-style Deductions,
Tableaux, etc.

» Semantics: Truth functions



Setting the stage: Classical logic

Propositional Logic (PL)
» Language: PAQ, P — (QV —R), etc.
» Proof-Theory: Natural Deduction, Hilbert-style Deductions,
Tableaux, etc.

» Semantics: Truth functions

First-Order Logic (FOL)
» Language: x =y, IxVy(P(x) A Q(x,y)),
Vx3y(F(x) = (G(x,y) A =R(y))), etc.
» Proof-Theory: Natural Deduction, Hilbert-style Deductions,
Tableaux, etc.

» Semantics: First-order structures



Reasoning with classical logic: pros and cons

Advantages:

> relatively simple syntax and well-understood semantics

> well-developed deductive systems and tools for automated reasoning

Disadvantages:
> cannot adequately represent some aspects natural language
» cannot adequately capture specific modes of reasoning

» undecidability of logical consequence and validity (for FOL)
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Modal Logic

» Modal logic has a long, distinguished history (from Aristotle).

» Until the late 1950s, it largely consisted of a collection of syntactic
theories

» Modern modal logic started in the early 1960s with the introduction
of relational semantics by Saul Kripke (although see the earlier work
by McKinsey and Tarski on logic and topology and Godel on
provability logic).

» There are a wide variety of modal systems, with different
interpretations of the modal operators. Modal logic is an important
tool in many disciplines: philosophy, computer science, linguistics,
economics



The History of Modal Logic

R. Goldblatt. Mathematical Modal Logic: A View of its Evolution. Handbook of the
History of Logic, Vol. 7, 2006.

P. Balckburn, M. de Rijke, and Y. Venema. Modal Logic. Section 1.7, Cambridge
University Press, 2001.

R. Ballarin. Modern Origins of Modal Logic. Stanford Encyclopedia of Philosophy,
2010.


http://plato.stanford.edu/entries/logic-modal-origins/

What is a modal?

A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.



Types of Modal Logics

Alethic logic: Necessary and possible truths.
Temporal logic: Temporal reasoning.

Spatial logics: Reasoning about spatial relations.
Epistemic logics: Reasoning about knowledge.
Doxastic logics: Reasoning about beliefs.

Deontic logics: Reasoning about obligations and permissions.



Types of Modal Logics

Logics of multiagent systems: Reasoning about many agents and their
knowledge, beliefs, goals, actions, strategies, etc.

Description logics: Reasoning about ontologies.
Logics of programs: Reasoning about program executions.
Logics of computations: Specification of transition systems.

Provability logic: Reasoning about proofs



Introducing Modal Logic

Modern Modal Logic began with C.I. Lewis' dissatisfaction with the
material conditional (—).

» Irrelevance/non-causality:
If the Sun is hot, then 2 +2 = 4.

» False antecedents:
If 24+ 2 =5 then the Moon is made of cheese.

> Monotonicity:

If | put sugar in my coffee, then it will taste good. Therefore, if |
put sugar and | put oil in my coffee then it will taste good.



Introducing Modal Logic

C.l. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B', or ‘It is necessarily the case that A implies B’
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Introducing Modal Logic

Gradually, the study of the modalities themselves became dominant, with
the study of “conditionals” developing into a separate topic.

10



Books

Modal Logic MODAL LOGIC

OPEN MINDS

JOHAN VAN BENTHEM

|
}. Fric Pacuiit

Neighborhood Handbook of

} Sema ntics for Modal Logic
' Modal Logic

FIRST-ORDER
MODAL LOGIC




Books

G EHUGHES &
M.J.CRESSWEL

A NEW INTRODUCTION TO

MODAL
LOGIC

MODAL LOGIC
for
PHILOSOPHERS

Second Edition
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Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘0" and 'O
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Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘0" and 'O

Og: “it is knowing that ¢ is true”

b it is consistent with everything that is known that ¢ is true”
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Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘0" and 'O

Og: “it is will always be that ¢ is true”

O it is will sometimes be that ¢ is true”
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Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘0" and 'O

Og: “it is ought to be that ¢ is true”

Oap: it is permissible that ¢ is true”
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Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘0" and 'O

Ogp: “itis that ¢ is true”

O titis that ¢ is true”

13



Modal Languages

The symbols ‘00" and ‘O’ are sentential operators the transform sentences
into more complex sentences (similar to the negation operator).

An alternative approach treats modals as predicates that apply to terms
(that are Godel numbers of sentences)

J. Stern. Toward Predicate Approaches to Modality. Springer, 2016.

13



Modal Languages

More generally, A(¢1,...,%n) is an n-ary modality.

Definition 1.11 of [BdRV]: A modal similarity type is a pair 7 = (O, p)
where O is a non-empty set and p: O — N. The elements of O are the
modal operator and p assigns to each modality an arity.

13



Narrow vs. Wide Scope

“If you do p, you must also do ¢"
» p—Ugq
> O(p—q)

14



de dicto vs. de re

“l know that someone appreciates me”

» O3xA(x, e) (de dicto)
» IxOA(x, e) (de re)

15



Iterations of Modal Operators

Op — OOgp: If | know, do | know that | know?

—O¢ — O-0¢p: If | don't know, do | know that | don't know?

16



Iterations of Modal Operators

Op — OOgp: If | know, do | know that | know?

—O¢ — O-0¢p: If | don't know, do | know that | don't know?

What about: COp — OO, OCp — OOy, ¢ — OOy,
OO(p A ) — COp ACOY, ...7

16



Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of
propositional modal formulas, denoted L(At), is the smallest set of
formulas generated by the following grammar:

plLl-wl|(pVe)|Cp

where p € At.

17



Propositional Modal Language

A formula of Modal Logic is defined inductively:

1. Any element of At (called atomic propositions or propositional
variables) is a formula

L is a formula
If ¢ and ) are formula, then so are = and ¢ V ¢

If ¢ is a formula, then so is Oy

AN

Nothing else is a formula

Eg_, D(p — Qq) vV OO=r; =01

17



Propositional Modal Language

The other Boolean connectives (A, —, and <) are defined as usual
T is defined as —.L.

Oy is defined as =O—p

Op — p is the formula =——$—p Vv p

17



Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of
propositional modal formulas, denoted L£(At), is the smallest set of
formulas generated by the following grammar:

plLl=pl(pAy)]|Dp
where p € At.

17



Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of
propositional modal formulas, denoted L(At), is the smallest set of
formulas generated by the following grammar:

plLl-p| (V)| (pAY)|(p—1)| el Op

where p € At.

17



Notation

» Sometimes we'll use lowercase letters p, g, r, ... for atomic
propositions and other times we'll use uppercase letters A, B, C, ...

» The choice of which modal operator is part of the syntax and which
is defined is largely conventional. We will use whatever is most
convenient.

> When there are multiple modal operators in the language, we will
use subscripts O,, <, or place them “inside” the operators: [a], (a)
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Notation

» Sometimes we'll use lowercase letters p, g, r, ... for atomic
propositions and other times we'll use uppercase letters A, B, C, ...

» The choice of which modal operator is part of the syntax and which
is defined is largely conventional. We will use whatever is most
convenient.

> When there are multiple modal operators in the language, we will

use subscripts O,, <, or place them “inside” the operators: [a], (a)

“This practice is not very consistent, but most readers should agree that
it is nice to have different clothes to wear, depending on one's mood”
(van Benthem, pg. 11)

18



Substitution

A function o : At — L(At). Extended to all formulas @ : L(At) — L(At):
1. o(p) =a(p)
2. o(~p) = —o(p)
3. 0(p Vi) =0a(e) Va(y)
4. a(Op) = Ca(p)
For simplicity, identify o and & and write ©? for o().
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Substitution

A function o : At — L(At). Extended to all formulas @ : L(At) — L(At):

1. o(p) =a(p)
2. o(~p) = —o(p)
3. a(p V) =0(p) Va(y)
4. a(Op) = Ca(p)
For simplicity, identify o and & and write ©? for o().

For example, if o(p) = OC(p A q) and o(q) = p A Og, then

(B(p A q) = Op)? =0((OC(p A q)) A (pADg)) — D(OO(p A q)).

19



Interpreting Modal Languages: Some Warm-up Questions

1. Is (A— B) V(B — A) true or false?
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Interpreting Modal Languages: Some Warm-up Questions

1.

2.
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A few questions to keep you up at night...

» |Is A— OB equivalent to O(A — B)?

» |s OA — A valid? What about OA — OOA?

> Can we give a truth-table semantics for the basic modal language?

Hint: there are only 4 truth-functions for a unary operator. Suppose
we want OA — A to be valid, but not A — OA and —UA.

21



Semantics for Propositional Modal Logic

No oA~ b

Relational semantics (i.e., Kripke semantics)

Neighborhood models

Algebraic semantics (BAO: Boolean algebras with operators)
Possibility structures

Topological semantics (Closure algebras)

Category-theoretic (Coalgebras)
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Mathematical Background: sets, relations, functions, basic logic, etc.
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Suppose that X is a set. A relation on X is a set of ordered pairs from
X: RC X x X.
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Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from

X: RC X xX.

Eg., X ={a,b,c,d}, R={(a,a),(b,a),(c,d),(a,c),(d,d)}

—®

oo

aRa
bR a
cRd
aRc
dRd
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Mathematical Background: Relations

Suppose that X is a set and R C X x X is a relation.
Irreflexive relation: for all x € X, x R x (i.e.,, (x,x) € R)

Eg, X ={a,b,c,d}

@& ©
O @
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Mathematical Background: Relations

Suppose that X is a set and R C X x X is a relation.
Transitive relation: for all x,y,z€ X, if xRy and yR z, then xR z
Eg, X ={a,b,c,d}
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G—©
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Suppose that R € W x W is a relation.

v

R is reflexive provided that for all w € W, wRw.

v

R is irreflexive provided that for all w € W, it is not the case that
wRw.

> R is symmetric provided that for all w,v € W, if wRv then vRw.

> R is transitive provided that for all w,v,x € W, if wRv and vRx
then wRx.

29



Suppose that R € W x W is a relation.

» R is complete provided that for all w,v € W, wRv or vRw (or
both).

» R is serial provided that for all w € W, there is a v € W such that
wRv

» R is anti-symmetric provided that for all w,v € W, if wRv and
vRw, then w = v.

» R is Euclidean provided that for all w,v,x € W, if wRv and wRx
then vRx.

30



Relational Structure

A relational structure is a tuple (W, R) where W # ) and
R C W x W is a relation.

» Elements of the domain W are called states, possible worlds, points,
or nodes.

> R is called the accessibility relation or the edge relation. When wRv
we say “w can see v" or "v is accessible from w".

» For we W, let R(w) = {v | wRv}.

31



Two generalizations:

1. There is more than one relation

2. The relations can be of arbitrary arity
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Relational structure with labels: (W R, Py, P,,...) where W # (), R

is a (binary or n-ary) relation and for each k > 1, Py is unary relation
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Two generalizations:

1. There is more than one relation

2. The relations can be of arbitrary arity

Relational structure with labels: (W R, Py, P,,...) where W # (), R
is a (binary or n-ary) relation and for each k > 1, Py is unary relation
(i.e., P, C W).

Warning: Although a relational structure with labels is just a relational
structure (with a binary relation and multiple unary relations), they have
a specific interpretation in the theory of modal logic.

32



Examples

v

Epistemic models

v

Temporal models

» Transition systems

Social networks

Other examples (see [ML], Section 1.1)

v

v
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Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.
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forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead"”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?
Claim: After first question, the children answer “l don't know", after the

second question the muddy children answer “l have mud on my
forehead!” (but the clean child is still in the dark).
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Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead"”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?

Claim: After first question, the children answer “l don't know", after the
second question the muddy children answer “l have mud on my
forehead!” (but the clean child is still in the dark). Then the clean child
says, “Oh, | must be clean.”

34



Muddy Children

Assume:
» There are three children: Ann, Bob and Charles.
» (Only) Ann and Bob have mud on their forehead.
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Muddy Children

Assume:
» There are three children: Ann, Bob and Charles.
» (Only) Ann and Bob have mud on their forehead.

(@O0

v

Ann Bob Charles

state-of-affairs
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Muddy Children
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’AII 8 possible situations‘
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Muddy Children
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’ The actual situation ‘
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Muddy Children
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’Ann’s uncertainty‘
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Muddy Children
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’ Bob's uncertainty ‘
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Muddy Children

‘ Charles’ uncertainty ‘
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Muddy Children
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Muddy Children

‘ None of the children know if they are muddy ‘
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Muddy Children
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’ None of the children know if they are muddy‘
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Muddy Children

‘ “At least one has mud on their forehead.” ‘
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Muddy Children
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Muddy Children
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No one steps forward. ‘
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Muddy Children

J00

No one steps forward.

Qo
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Muddy Children

J00

“Who has mud on their forehead?”

Qo
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Muddy Children
J00

L I

Charles does not know he is clean.

Qo0
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Muddy Children

J00

Ann and Bob step forward.
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Muddy Children
@ I*)

Now, Charles knows he is clean.

Qo0
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Muddy Children

Now, Charles knows he is clean.

Qo0
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Time

One of the most successful applications of modal logic is in the “logic of
time".

37
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Time

One of the most successful applications of modal logic is in the “logic of
time".
Many variations

» discrete or continuous
» branching or linear

» point based or interval based
V. Goranko and A. Galton. Temporal Logic. Stanford Encyclopedia of Philosophy:

http://plato.stanford.edu/entries/logic-temporal/.

I. Hodkinson and M. Reynolds. Temporal Logic. Handbook of Modal Logic, 2008.
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Models of Time

T = (T, <) where

» T is a set of time points (or moments),
» < C T x T is the precedence relation: s < t means “time point s

precedes time point t (or s occurs earlier than t)" and
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order).
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Models of Time

T = (T, <) where

» T is a set of time points (or moments),
» < C T x T is the precedence relation: s < t means “time point s
precedes time point t (or s occurs earlier than t)" and

< is typically assumed to be irreflexive and transitive (a strict partial

order).

Examples: (N, <), (Z, <), (Q, <), (R, <)

38



Other properties of <

v

Linearity: forall s,t € T, s<tors=tof t<s

v

Past-linear: for all s,x,y € T, if x < s and y < s, then either

x<yorx=yory<x

» Denseness for all s,t € T, if s < t then thereis a z € T such that
s<zandz <t

> Discreteness: for all s,t € T, if s < t then there is a z such that

(s < z and there is no u such that s < u and v < z)
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Branching Time

Each moment t € T can be decided into the Past(t) ={se€ T | s < t}
and the Future(t) ={se€ T | t <s}

Typically, it is assumed that the past is linear, but the future may be
branching.
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Branching Time

Each moment t € T can be decided into the Past(t) ={se€ T | s < t}
and the Future(t) ={se€ T | t <s}

Typically, it is assumed that the past is linear, but the future may be
branching.

Fo: "“it will be the case that ¢"

o will be the case “in the case in the actual course of events” or “no
matter what course of events”

40



Branching Time Logics

A branch b in (T, <) is a maximal linearly ordered subset of T

s € T ison a branch b of T provided s € b (we also say "b is a branch
going through t").

41



Temporal Logics
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Temporal Logics

» Linear Time Temporal Logic: Reasoning about computation paths:

Fp: ¢ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foun-
dations of Computer Science (1977).
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Temporal Logics

» Linear Time Temporal Logic: Reasoning about computation paths:

Fp: ¢ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foun-
dations of Computer Science (1977).

» Branching Time Temporal Logic: Allows quantification over paths:

JF: there is a path in which ¢ is eventually true.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons
using Branching-time Temporal-logic Specifications. In Proceedings Workshop on Logic
of Programs, LNCS (1981).
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Interval Values

J. Allen and G. Ferguson. Actions and Events in Interval Temporal Logics. Journal of
Logic and Computation, 1994.

J. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of
the ACM, 38:4, pp. 935 - 962, 1991.

J. van Benthem. Logics of Time. Kluwer, 1991.
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Interval Temporal Logics

Let 7 =(T,<) beaframe and I(T) = {[a,b] | a,b € T and a < b} be
the set of intervals over T

Interval-based relational structure: (/(7T),{Rx}) where
Rx C I(T) x I(T).
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Interval Temporal Logics

(A)

a Ale,dl & b=c
Rrle,dl & b<c

Rple,d| < a=cd<b

S

S

S

Rgle,d] & b=d,a<c

)

a,b|Rple,d] < a<c,d<b

[a, b] R
[a, 0]
[a, 0]
[a, b]
[a, 0]
[a, 0]

a,b|Role,d] ©a<c<b<d
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Actions

1. Actions as transitions between states, or situations:
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Actions

1. Actions as transitions between states, or situations:

a

® T
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Actions

1. Actions as transitions between states, or situations:

a

® T

2. Actions restrict the set of possible future histories.

46



Computational vs. Behavioral Structures

[

do qo
doqo goq1

/NN

qi dododqo doqoqi qoqiqo qoqiqi
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Examples

alarm on

toggle

>

alarm off
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Examples

alarm on

alarm on

alarm off

toggle
>
toggl — toggl
ogee » alarm off oese

»| alarm on
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Examples

employed

ask for promotion

promoted

fired
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Programs
Act is a set of primitive actions, or programs

A program is generated by the following grammar:

ala;flaup|a”

> «; 3: concatenation, do « then (3

» o U B: non-deterministic choice: choose to execute « or 3

> o iteration: execute « some finite number of times.

50



Propositional Dynamic Logic

<W= {Ra}aEAct>

If o is a program, then R, C W x W where wR,v means executing « in
state w leads to state v.
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Propositional Dynamic Logic

<W= {Ra}aEAct>

If o is a program, then R, C W x W where wR,v means executing « in
state w leads to state v.

Ra.p = RoR={(w,v) | thereis a u such that wRyu and uRgv}
Raus = Ra U Rg

Ro+ = Up>1R?, where R = R and R"*1 = Ro R"

D. Harel, D. Kozen and Tiuryn. Dynamic Logic. 2001.
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Examples

v' Epistemic models

v" Temporal models

v Transition systems

» Social networks

» Other examples (see [ML], Section 1.1)
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Relational Model

-0
-0
Q "

1. Set of states

()
Q s
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Relational Model

wi

W2

@

W4

1. Set of states
2. Label the states

W3
W5
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Relational Model

1. Set of states
2. Label the states

/ \ 3. Accessibility relation
G ‘

N e
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Relational Model

/\

N

1. Set of states
2. Label the states

3. Accessibility relation

[denoted w3 RW5J

W5
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Frame: (W, R), where W £ (0 and RC W x W
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Frame: (W, R), where W £ (0 and RC W x W

Model: Suppose that 7 = (W, R) is a frame. The tuple (W,R, V) is a
model based on F where V : At — (W) is a valuation function.

» w € V(p) means that p is true at w.
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Frame: (W, R), where W £ (0 and RC W x W

Model: Suppose that 7 = (W, R) is a frame. The tuple (W,R, V) is a
model based on F where V : At — (W) is a valuation function.

» w € V(p) means that p is true at w.

Pointed Model Suppose that M = (W, R, V) is a model. If w € W,
then (M, w) is called a pointed model.
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Truth of Modal Formulas

Suppose that M = (W, R, V) is a model. Truth of a modal formula

¢ € L(At) at a state w in M, denoted M, w = ¢, is defined as follows:

v

M, w = piff w € V(p) (where p € At)

Mow = L

M,w | —piff Mow = ¢
MwEeVYiff MiwE o M,w k1

M, w = Oy iff there is a v € W such that wRv and M, v = ¢

v

v

v

v
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Truth of Modal Formulas

» MwlE oAV iff Myw = @ and M,w =19

» M,w = ¢ — ¢ iff if M,w = ¢, then M, w = ¢ iff either
M, wE@or Myw =1

» M,w = Ogp iff for all v € W, if wRv then M, v = ¢
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w1 ): OB A B?
wy @ wy = OOB?
wi = OOORBY?
wy = OOB?
Q wy ): ooC?
ws W = 00C?
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wy I;A OB AB

wi @ wy |: OOB?
wi | OOOB?

wy = OOB?

O 7% ‘: oo C?

ws Wi = 00C?
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wi £ OBAB
w1 @ wq ’: OOB
w = OOOB
wy = O0OB?
ﬂ wq ‘: aoCc?
w3 wy = OOC?

58



wy £ OBAB

1 @ wy = OOB
wy = OOOB

wh ): ooB

ﬂ wy = OOC?

w3 wy = OOC?
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wy £ OBAB

1 @ wy = OOB
wy = OOOB

wi l;é OdB

ﬂ wy = OOC?

w3 wy = OOC?
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wi £ OBAB
w1 @ w = OOB
w = OOOB
wi l;é OdB
ﬂ w1 l;é oocC
w3 wy = OOC?
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wi £ OBAB
w1 @ w = OOB
wi = OOOB
wi ): OdB
ﬂ w1 l;é oocC
w3 wi ‘: OOC?
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w1 l;& OBAB

w1 @ wq ): OOB
wy = OOOB

wy = 00B

Q w1 I;E oocC
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w1 l;& OBAB

w1 @ wq ): OOB
wy = OOOB

wy = 00B

Q w1 l;é oocC
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¢ is satisfiable means that there is a model M = (W, R, V) and
w € W such that M, w = ¢.
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Validity

Valid on a model M = (W, V,R)
ME: forallwe W, M,w k¢
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F [= ¢: for all M based on F, for all w e W, M,w |= ¢
for all functions V, forall w e W, (W,R,V),w = ¢
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F,w = ¢: for all M based on F, M, w = ¢
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Validity

Valid on a model M = (W, V,R)
ME: forallwe W, M,w k¢

Valid on a frame F = (W, R)

F [= ¢: for all M based on F, for all w e W, M,w |= ¢
for all functions V, forall w e W, (W,R,V),w = ¢

Valid at a state on a frame F = (W, R) with w ¢ W
F,w = ¢: for all M based on F, M, w = ¢

Valid in a class F of frames:

Fro:forall FEF, Fl=o
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Model validity

Sar)w €9

M =0Oq

validity on a model is not closed under substitution (M = Op)
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Frame validity

Some frame validities:

(OgADg) = O(pAq)
» OT

v

v

O(p — q) — (Op — Hq)

Some frame non-validities:
» Op V O-p (compare with the validity Op vV =0Op)
> (OpAOq) = O(pAq)
> O(pVq) = (BpVvDOq)
» Op—=p
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Valid at a state

[.F,Wl}zﬂOgo—)OD(p]




Valid at a state

N

@ < — o

[./T,Wl)=D<><p—><>Dgp]




Valid at a state

N

g < —( o

[.77W1)=D<>g0—><>D(p]




Propositional Dynamic Logic

Let Act be a set of atomic programs and At a set of atomic propositions.

Formulas of PDL have the following syntactic form:

p:=p|L]-pleVy|lalp
a=alaUf|a;p|a"]|e?

where p € At and a € Act.

[a]¢ is intended to mean “after executing the program «, ¢ is true”
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Propositional Dynamic Logic

Semantics: M = (W, {R, | a € P}, V) where for each a € P,
R, CW x W and V:At — p(W)

v

Rauﬂ =R, U Rg

Ras = Ra o Rg

> Ry« :=Up>oR}

RSO? = {(Wv W) | M7W ): (P}

v

v

M, w = [a]gp iff for each v, if wRyv then M v = ¢
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Propositional Dynamic Logic

Some validities:
L [aUBle < [alp A[Ble

N

- e Bl < [a][Bly

w

[ < (¥ — 9)

o

- A a][ar]p < [af]p

o1

- AN [ar](p = [ae) = [a*]e
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Propositional Dynamic Logic

Some validities:

1

N

w

o

o1

U Bl < [ale A By

- [ai Bl < [o][Ble

W (¥ =)

oA [a][er]e < [a*]p (Fixed-Point Axiom)

e AN [ef](e = [a]e) = [@*]¢ (Induction Axiom)
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Logical consequence

Suppose that I is a set of formulas and F is a set of frames. We write
M,w T iff Myw = aforallaerl.
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Logical consequence

Suppose that I is a set of formulas and F is a set of frames. We write
M,w T iff Myw = aforallaerl.

Local: T {=f ¢ iff for all frames F € F, for all models M based on F and
all states w in M, M, w =T implies M, w |= ¢

Global: T |:‘E  iff for all frames F € F, for all models M based on F,
M =T implies M | ¢

68



{p} % Op

{p} I~ Op
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Definability
Suppose that M = (W R, V) is a relational model.

[-Im : £ — (W) defined as [o]m = {w | M,w = ¢}.

[Pl = Vip)
[-elm = W—[elm
[e AVIm = [elm N [¥Im
[Oelm = mr([eIm)

where mg(X) = {w | R(w) C X}
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Definability
Suppose that M = (W R, V) is a relational model.

[-Im : £ — (W) defined as [o]m = {w | M,w = ¢}.

[Pl = Vip)
[-elm = W—[elm
[e AVIm = [elm N [¥Im
[Oelm = mr([eIm)

where mg(X) = {w | R(w) C X}

X C W is definable by modal formula if there is some ¢ € L such that
X = [elm.
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Defining States

» {ws}

» {Wl}



Defining States

w, OD

N

-0

(O

N

O

> {wa} = [O1]
» {ws3} =
> {wm} =
» {m} =
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Defining States

wo :)
/Q\ > {wa} = [01]
» {wz} =[OOLADOL]
Q Wy > {W2} =
\ Vo
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Defining States

/ \ > {wa} =[0O1]
> {ws) = [0OL ADOL]
Q wa > {mp} =[COLACOT]
\ ST
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Defining States

w, Q:;
7N
() [
N

> {wa} =[O1]

> {ws} = [00L ADOL]

> {wp} = [COLAOOT]

> {w) = [0(00L A DOL)]
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Defining States

/ O\

\Q/

> {wa} =[O1]
> {WQ, W3} = |I<>DJ_ A DDJ_]]
» {wm} =[O(CO0LADOL)]
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Distinguishing States

O

w @ "
<(s) -

V2

S

o—0P

What is the difference between states wy and v;?
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What is the difference between states wy and v¢?
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Distinguishing States
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Is there a modal formula true at wy but not at v¢?
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Distinguishing States
XORENO
()
(e e
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V2

|

wi ): OOC—A but vy I;é Oo—A.
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Distinguishing States
® O
o
(e =0,
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V2

|

wy = OOC—A but vy [ OO—-A.

72



Distinguishing States

&4
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w2 V2

wy = OOC—A but v £ OOC—-A.
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Distinguishing States
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Distinguishing States
(D) (@
| ~§
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(e e
- ®

V2

|

wy = OO=A but v £ OO—A.
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Distinguishing States

p
<(s) =0

V2

|

What about now? Is there a modal formula true at wy but not v¢?
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Distinguishing States

7T
<(s) =0

V2

|

No modal formula can distinguish wy and vy!
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A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

K
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A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

K
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Logical issues: expressive power; axiomatizing logical consequence;
proof theory; decidability/complexity of satisfiability/model checking

Language extensions: Hybrid logic; First-order extensions;
Propositional quantifiers; Fixed-point operators

Alternative semantics: Topological models; Neighborhood models;
Algebraic models; Possibility semantics

Applications: Temporal logic; (Dynamic) Epistemic logic
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Conferences/Journals

TARK (www.tark.org): July 17-19, 2019, Toulouse, Deadline: early
April

LORI (golori.org/lori2019): October 18-21, 2019, Southwest
University, Chongging, China, Deadline: May 13

LOFT (faculty.econ.ucdavis.edu/faculty/bonanno/loft.html):

next conference in 2020

AIML (www.aiml.net): next conference in 2020

ESSLLI (ess11i2019.folli.info): Summer school, Riga, Latvia,
August 5 - 16 (also see NASSLLI)

Journals: Review of Symbolic Logic; Journal of Philosophical Logic;
Journal of Logic, Language and Information; Synthese?; Journal of
Symbolic Logic?
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