
Modal Logics for Language:
Alethic, Epistemic, Temporal, Spatial,

Doxastic Models of Reasoning

James Pustejovsky
Sept. 1, 2023

CS 112 Fall 2023
Brandeis University

Modal Logics for Language

James Pustejovsky

Our Team

Jingxuan Tu Dr. Strange and Prof. HegelAristotle Saul Kripke

Applications of modal logic

Topics covered in this course
• Review: Propositional Logic (PL), Predicate Logic (FOL), Proof Theories
• Syntax and Semantics of Basic Modal Logic (PML) for propositions
• Temporal Modal Logics: LTL, CTL, Interval Temporal Logic
• Dynamic/Action Logics: PDL, DEL, PAL, AL-STIT
• Spatial Logics: SML, RCC8
• Epistemic Logics: S4, K45, DEL,
• Deontic Logics: SDL, Deontic STIT, Multi-agent DL
• Counterfactual Logics: Lewi—Stalnaker Logic, Pearl Causal Model
• Translations: AMR, AVM, graphs into Modal structures

Learning Goals for the Course

• Understand why Modal Logic is important – it’s everywhere!
• To encode and interpret linguistic, cognitive, and computational

problems as modal relational structures
• To identify computational properties of the language used for

modeling the problem (decidability, soundness, completeness)

1. Propositional Modal Logic

2. First-Order Modal Logic

3. Non-Normal Modal Logics

4. Applications: (Dynamic) Epistemic Logic, Epistemic Temporal
Logic, Logics of Knowledge and Ability

2

 Topics in this class

Slides thanks to: Eric Pacuit, Patrick Blackburn, Valentine Goranko, and
the “Logic in Action” course

Setting the stage: Classical logic

Propositional Logic (PL)
I Language: P ∧ Q, P → (Q ∨ ¬R), etc.

I Proof-Theory: Natural Deduction, Hilbert-style Deductions,
Tableaux, etc.

I Semantics: Truth functions

First-Order Logic (FOL)
I Language: x = y , ∃x∀y(P(x) ∧ Q(x , y)),
∀x∃y(F (x)→ (G (x , y) ∧ ¬R(y))), etc.

I Proof-Theory: Natural Deduction, Hilbert-style Deductions,
Tableaux, etc.

I Semantics: First-order structures

3

Setting the stage: Classical logic

Propositional Logic (PL)
I Language: P ∧ Q, P → (Q ∨ ¬R), etc.

I Proof-Theory: Natural Deduction, Hilbert-style Deductions,
Tableaux, etc.

I Semantics: Truth functions

First-Order Logic (FOL)
I Language: x = y , ∃x∀y(P(x) ∧ Q(x , y)),
∀x∃y(F (x)→ (G (x , y) ∧ ¬R(y))), etc.

I Proof-Theory: Natural Deduction, Hilbert-style Deductions,
Tableaux, etc.

I Semantics: First-order structures

3

Reasoning with classical logic: pros and cons

Advantages:

I relatively simple syntax and well-understood semantics

I well-developed deductive systems and tools for automated reasoning

Disadvantages:

I cannot adequately represent some aspects natural language

I cannot adequately capture specific modes of reasoning

I undecidability of logical consequence and validity (for FOL)

4

Modal Logic

I Modal logic has a long, distinguished history (from Aristotle).

I Until the late 1950s, it largely consisted of a collection of syntactic
theories

I Modern modal logic started in the early 1960s with the introduction
of relational semantics by Saul Kripke (although see the earlier work
by McKinsey and Tarski on logic and topology and Gödel on
provability logic).

I There are a wide variety of modal systems, with different
interpretations of the modal operators. Modal logic is an important
tool in many disciplines: philosophy, computer science, linguistics,
economics

5

Modal Logic

I Modal logic has a long, distinguished history (from Aristotle).

I Until the late 1950s, it largely consisted of a collection of syntactic
theories

I Modern modal logic started in the early 1960s with the introduction
of relational semantics by Saul Kripke (although see the earlier work
by McKinsey and Tarski on logic and topology and Gödel on
provability logic).

I There are a wide variety of modal systems, with different
interpretations of the modal operators. Modal logic is an important
tool in many disciplines: philosophy, computer science, linguistics,
economics

5

Modal Logic

I Modal logic has a long, distinguished history (from Aristotle).

I Until the late 1950s, it largely consisted of a collection of syntactic
theories

I Modern modal logic started in the early 1960s with the introduction
of relational semantics by Saul Kripke (although see the earlier work
by McKinsey and Tarski on logic and topology and Gödel on
provability logic).

I There are a wide variety of modal systems, with different
interpretations of the modal operators. Modal logic is an important
tool in many disciplines: philosophy, computer science, linguistics,
economics

5

The History of Modal Logic

R. Goldblatt. Mathematical Modal Logic: A View of its Evolution. Handbook of the
History of Logic, Vol. 7, 2006.

P. Balckburn, M. de Rijke, and Y. Venema. Modal Logic. Section 1.7, Cambridge
University Press, 2001.

R. Ballarin. Modern Origins of Modal Logic. Stanford Encyclopedia of Philosophy,
2010.

6

http://plato.stanford.edu/entries/logic-modal-origins/

What is a modal?

A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

7

Types of Modal Logics

Alethic logic: Necessary and possible truths.

Temporal logic: Temporal reasoning.

Spatial logics: Reasoning about spatial relations.

Epistemic logics: Reasoning about knowledge.

Doxastic logics: Reasoning about beliefs.

Deontic logics: Reasoning about obligations and permissions.

8

Types of Modal Logics

Logics of multiagent systems: Reasoning about many agents and their
knowledge, beliefs, goals, actions, strategies, etc.

Description logics: Reasoning about ontologies.

Logics of programs: Reasoning about program executions.

Logics of computations: Specification of transition systems.

Provability logic: Reasoning about proofs

8

Introducing Modal Logic

Modern Modal Logic began with C.I. Lewis’ dissatisfaction with the
material conditional (→).

I Irrelevance/non-causality:

If the Sun is hot, then 2 + 2 = 4.

I False antecedents:

If 2 + 2 = 5 then the Moon is made of cheese.

I Monotonicity:

If I put sugar in my coffee, then it will taste good. Therefore, if I
put sugar and I put oil in my coffee then it will taste good.

9

Introducing Modal Logic

C.I. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B’, or ‘It is necessarily the case that A implies B’

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: G → A
Defense: ¬(G → A)
Judge: ¬(G → A)

10

Introducing Modal Logic

C.I. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B’, or ‘It is necessarily the case that A implies B’

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: G → A
Defense: ¬(G → A)
Judge: ¬(G → A)

10

Introducing Modal Logic

C.I. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B’, or ‘It is necessarily the case that A implies B’

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: G → A
Defense: ¬(G → A)
Judge: ¬(G → A)

10

Introducing Modal Logic

C.I. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B’, or ‘It is necessarily the case that A implies B’

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”
Prosecutor: G → A

Defense: ¬(G → A)
Judge: ¬(G → A)

10

Introducing Modal Logic

C.I. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B’, or ‘It is necessarily the case that A implies B’

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: G → A
Defense: ¬(G → A)
Judge: ¬(G → A)

10

Introducing Modal Logic

C.I. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B’, or ‘It is necessarily the case that A implies B’

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: G → A
Defense: ¬(G → A)
Judge: ¬(G → A) ⇔ G ∧ ¬A, therefore G !

10

Introducing Modal Logic

C.I. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B’, or ‘It is necessarily the case that A implies B’

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: 2(G → A) (It must be the case that . . .)
Defense: ¬2(G → A)
Judge: ¬2(G → A) (What can the Judge conclude?)

10

Introducing Modal Logic

C.I. Lewis’ idea: Interpret ‘If A then B’ as ‘It must be the case that A
implies B’, or ‘It is necessarily the case that A implies B’

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: 2(G → A) (It must be the case that . . .)
Defense: ¬2(G → A)
Judge: ¬2(G → A) (What can the Judge conclude?)

10

Introducing Modal Logic

Gradually, the study of the modalities themselves became dominant, with
the study of “conditionals” developing into a separate topic.

10

Books

11

Books

12

Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘2’ and ’3’.

2ϕ: “it is necessary that ϕ is true”

3ψ: “it is possible that ϕ is true”

More generally, 2(ϕ1, . . . , ϕn), 3(ϕ1, . . . , ϕn) are n-ary modalities.

13

Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘2’ and ’3’.

2ϕ: “it is necessary that ϕ is true”

3ψ: “it is possible that ϕ is true”

More generally, 2(ϕ1, . . . , ϕn), 3(ϕ1, . . . , ϕn) are n-ary modalities.

13

Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘2’ and ’3’.

2ϕ: “it is knowing that ϕ is true”

3ψ: “it is consistent with everything that is known that ϕ is true”

More generally, 2(ϕ1, . . . , ϕn), 3(ϕ1, . . . , ϕn) are n-ary modalities.

13

Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘2’ and ’3’.

2ϕ: “it is will always be that ϕ is true”

3ψ: “it is will sometimes be that ϕ is true”

More generally, 2(ϕ1, . . . , ϕn), 3(ϕ1, . . . , ϕn) are n-ary modalities.

13

Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘2’ and ’3’.

2ϕ: “it is ought to be that ϕ is true”

3ψ: “it is permissible that ϕ is true”

More generally, 2(ϕ1, . . . , ϕn), 3(ϕ1, . . . , ϕn) are n-ary modalities.

13

Modal Languages

Modal languages extend some logical language (e.g., propositional logic,
first-order logic, second-order logic, etc.) with (at least) two new
symbols ‘2’ and ’3’.

2ϕ: “it is that ϕ is true”

3ψ: “it is that ϕ is true”

More generally, 2(ϕ1, . . . , ϕn), 3(ϕ1, . . . , ϕn) are n-ary modalities.

13

Modal Languages

The symbols ‘2’ and ‘3’ are sentential operators the transform sentences
into more complex sentences (similar to the negation operator).

An alternative approach treats modals as predicates that apply to terms
(that are Gödel numbers of sentences)

J. Stern. Toward Predicate Approaches to Modality. Springer, 2016.

13

Modal Languages

More generally, 4(ϕ1, . . . , ϕn) is an n-ary modality.

Definition 1.11 of [BdRV]: A modal similarity type is a pair τ = (O, ρ)
where O is a non-empty set and ρ : O → N. The elements of O are the
modal operator and ρ assigns to each modality an arity.

13

Narrow vs. Wide Scope

“If you do p, you must also do q”

I p → 2q

I 2(p → q)

14

de dicto vs. de re

“I know that someone appreciates me”

I 2∃xA(x , e) (de dicto)

I ∃x2A(x , e) (de re)

15

Iterations of Modal Operators

2ϕ→ 22ϕ: If I know, do I know that I know?

¬2ϕ→ 2¬2ϕ: If I don’t know, do I know that I don’t know?

What about: 32ϕ→ 23ϕ, 23ϕ→ 32ϕ, ϕ→ 23ϕ,
32(ϕ ∧ ψ)→ 32ϕ ∧32ψ, . . .?

16

Iterations of Modal Operators

2ϕ→ 22ϕ: If I know, do I know that I know?

¬2ϕ→ 2¬2ϕ: If I don’t know, do I know that I don’t know?

What about: 32ϕ→ 23ϕ, 23ϕ→ 32ϕ, ϕ→ 23ϕ,
32(ϕ ∧ ψ)→ 32ϕ ∧32ψ, . . .?

16

Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of
propositional modal formulas, denoted L(At), is the smallest set of
formulas generated by the following grammar:

p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | 3ϕ
where p ∈ At.

17

Propositional Modal Language

A formula of Modal Logic is defined inductively:

1. Any element of At (called atomic propositions or propositional
variables) is a formula

2. ⊥ is a formula

3. If ϕ and ψ are formula, then so are ¬ϕ and ϕ ∨ ψ
4. If ϕ is a formula, then so is 3ϕ

5. Nothing else is a formula

Eg., 2(p → 3q) ∨23¬r ; ¬3¬⊥

17

Propositional Modal Language

The other Boolean connectives (∧, →, and ↔) are defined as usual

> is defined as ¬⊥.

2ϕ is defined as ¬3¬ϕ

2p → p is the formula ¬¬3¬p ∨ p

17

Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of
propositional modal formulas, denoted L(At), is the smallest set of
formulas generated by the following grammar:

p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | 2ϕ
where p ∈ At.

3ϕ := ¬2¬ϕ

17

Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of
propositional modal formulas, denoted L(At), is the smallest set of
formulas generated by the following grammar:

p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | (ϕ ∧ ψ) | (ϕ→ ψ) | 3ϕ | 2ϕ
where p ∈ At.

17

Notation

I Sometimes we’ll use lowercase letters p, q, r , . . . for atomic
propositions and other times we’ll use uppercase letters A,B,C , . . .

I The choice of which modal operator is part of the syntax and which
is defined is largely conventional. We will use whatever is most
convenient.

I When there are multiple modal operators in the language, we will
use subscripts 2a, 3a or place them “inside” the operators: [a], 〈a〉

“This practice is not very consistent, but most readers should agree that
it is nice to have different clothes to wear, depending on one’s mood”

(van Benthem, pg. 11)

18

Notation

I Sometimes we’ll use lowercase letters p, q, r , . . . for atomic
propositions and other times we’ll use uppercase letters A,B,C , . . .

I The choice of which modal operator is part of the syntax and which
is defined is largely conventional. We will use whatever is most
convenient.

I When there are multiple modal operators in the language, we will
use subscripts 2a, 3a or place them “inside” the operators: [a], 〈a〉

“This practice is not very consistent, but most readers should agree that
it is nice to have different clothes to wear, depending on one’s mood”

(van Benthem, pg. 11)

18

Substitution

A function σ : At→ L(At). Extended to all formulas σ : L(At)→ L(At):

1. σ(p) = σ(p)

2. σ(¬ϕ) = ¬σ(ϕ)

3. σ(ϕ ∨ ψ) = σ(ϕ) ∨ σ(ψ)

4. σ(3ϕ) = 3σ(ϕ)

For simplicity, identify σ and σ and write ϕσ for σ(ϕ).

For example, if σ(p) = 23(p ∧ q) and σ(q) = p ∧2q, then

(2(p ∧ q)→ 2p)σ = 2((23(p ∧ q)) ∧ (p ∧2q))→ 2(23(p ∧ q)).

19

Substitution

A function σ : At→ L(At). Extended to all formulas σ : L(At)→ L(At):

1. σ(p) = σ(p)

2. σ(¬ϕ) = ¬σ(ϕ)

3. σ(ϕ ∨ ψ) = σ(ϕ) ∨ σ(ψ)

4. σ(3ϕ) = 3σ(ϕ)

For simplicity, identify σ and σ and write ϕσ for σ(ϕ).

For example, if σ(p) = 23(p ∧ q) and σ(q) = p ∧2q, then

(2(p ∧ q)→ 2p)σ = 2((23(p ∧ q)) ∧ (p ∧2q))→ 2(23(p ∧ q)).

19

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false?

true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false?

false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false?

It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false?

true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false?

false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false?

false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false?

It depends!

20

Interpreting Modal Languages: Some Warm-up Questions

1. Is (A→ B) ∨ (B → A) true or false? true.

2. Is A→ (B → ¬A) true or false? false.

3. Is A→ (B ∨ C) true or false? It depends!

4. Is 2A→ (B → 2A) true or false? true.

5. Is ¬2A ∧ ¬(3B ∨ ¬2A) true or false? false.

6. Is ¬2A ∧ ¬(3B ∨3¬A) true or false? false.
(tricky: ¬3¬A is equivalent to 2A.)

7. Is 2A→ A true or false? It depends!

20

A few questions to keep you up at night...

I Is A→ 2B equivalent to 2(A→ B)?

I Is 2A→ A valid? What about 2A→ 22A?

I Can we give a truth-table semantics for the basic modal language?

Hint: there are only 4 truth-functions for a unary operator. Suppose
we want 2A→ A to be valid, but not A→ 2A and ¬2A.

21

Semantics for Propositional Modal Logic

1. Relational semantics (i.e., Kripke semantics)

2. Neighborhood models

3. Algebraic semantics (BAO: Boolean algebras with operators)

4. Possibility structures

5. Topological semantics (Closure algebras)

6. Category-theoretic (Coalgebras)

7. . . .

22

Semantics for Propositional Modal Logic

1. Relational semantics (i.e., Kripke semantics)

2. Neighborhood models

3. Algebraic semantics (BAO: Boolean algebras with operators)

4. Possibility structures

5. Topological semantics (Closure algebras)

6. Category-theoretic (Coalgebras)

7. . . .

22

Mathematical Background: sets, relations, functions, basic logic, etc.

23

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from
X : R ⊆ X × X .

E.g., X = {a, b, c , d}, R = {(a, a), (b, a), (c , d), (a, c), (d , d)}

a b

c d

a R a
b R a
c R d
a R c
d R d

24

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from
X : R ⊆ X × X .

E.g., X = {a, b, c , d}, R = {(a, a), (b, a), (c , d), (a, c), (d , d)}

a b

c d

a R a
b R a
c R d
a R c
d R d

24

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from
X : R ⊆ X × X .

E.g., X = {a, b, c , d}, R = {(a, a), (b, a), (c , d), (a, c), (d , d)}

a b

c d

a R a
b R a
c R d
a R c
d R d

24

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from
X : R ⊆ X × X .

E.g., X = {a, b, c , d}, R = {(a, a), (b, a), (c , d), (a, c), (d , d)}

a b

c d

a R a
b R a
c R d
a R c
d R d

24

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from
X : R ⊆ X × X .

E.g., X = {a, b, c , d}, R = {(a, a), (b, a), (c , d), (a, c), (d , d)}

a b

c d

a R a
b R a
c R d
a R c
d R d

24

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from
X : R ⊆ X × X .

E.g., X = {a, b, c , d}, R = {(a, a), (b, a), (c , d), (a, c), (d , d)}

a b

c d

a R a
b R a
c R d
a R c
d R d

24

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Reflexive relation: for all x ∈ X , x R x

E.g., X = {a, b, c , d}

a b

c d

25

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Reflexive relation: for all x ∈ X , x R x

E.g., X = {a, b, c , d}

a b

c d

25

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Irreflexive relation: for all x ∈ X , x 6R x (i.e., (x , x) 6∈ R)

E.g., X = {a, b, c , d}

a b

c d

26

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Irreflexive relation: for all x ∈ X , x 6R x (i.e., (x , x) 6∈ R)

E.g., X = {a, b, c , d}

a b

c d

26

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Symmetric relation: for all x , y ∈ X , if x R y , then y R x

E.g., X = {a, b, c , d}

a b

c d

27

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Symmetric relation: for all x , y ∈ X , if x R y , then y R x

E.g., X = {a, b, c , d}

a b

c d

27

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Transitive relation: for all x , y , z ∈ X , if x R y and y R z , then x R z

E.g., X = {a, b, c , d}

a b

c d

28

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Transitive relation: for all x , y , z ∈ X , if x R y and y R z , then x R z

E.g., X = {a, b, c , d}

a b

c d

28

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Transitive relation: for all x , y , z ∈ X , if x R y and y R z , then x R z

E.g., X = {a, b, c , d}

a b

c d

28

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Transitive relation: for all x , y , z ∈ X , if x R y and y R z , then x R z

E.g., X = {a, b, c , d}

a b

c d

28

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Transitive relation: for all x , y , z ∈ X , if x R y and y R z , then x R z

E.g., X = {a, b, c , d}

a b

c d

28

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Transitive relation: for all x , y , z ∈ X , if x R y and y R z , then x R z

E.g., X = {a, b, c , d}

a b

c d

28

Mathematical Background: Relations

Suppose that X is a set and R ⊆ X × X is a relation.

Transitive relation: for all x , y , z ∈ X , if x R y and y R z , then x R z

E.g., X = {a, b, c , d}

a b

c d

28

Suppose that R ⊆W ×W is a relation.

I R is reflexive provided that for all w ∈W , wRw . asdf as df asdf as
df asd f asdf asd f asdf

I R is irreflexive provided that for all w ∈W , it is not the case that
wRw . asdf as df asdf as df asd f asdf asd f asdf

I R is symmetric provided that for all w , v ∈W , if wRv then vRw .
asdf as df asdf as df asd f asdf asd f asdf

I R is transitive provided that for all w , v , x ∈W , if wRv and vRx
then wRx .

29

Suppose that R ⊆W ×W is a relation.

I R is complete provided that for all w , v ∈W , wRv or vRw (or
both).

I R is serial provided that for all w ∈W , there is a v ∈W such that
wRv

I R is anti-symmetric provided that for all w , v ∈W , if wRv and
vRw , then w = v .

I R is Euclidean provided that for all w , v , x ∈W , if wRv and wRx
then vRx .

30

Relational Structure

A relational structure is a tuple 〈W ,R〉 where W 6= ∅ and
R ⊆W ×W is a relation.

I Elements of the domain W are called states, possible worlds, points,
or nodes.

I R is called the accessibility relation or the edge relation. When wRv
we say “w can see v” or “v is accessible from w”.

I For w ∈W , let R(w) = {v | wRv}.

31

Two generalizations:

1. There is more than one relation

2. The relations can be of arbitrary arity

Relational structure with labels: 〈W ,R,P1,P2, . . .〉 where W 6= ∅, R
is a (binary or n-ary) relation and for each k ≥ 1, Pk is unary relation
(i.e., Pk ⊆W).

Warning: Although a relational structure with labels is just a relational
structure (with a binary relation and multiple unary relations), they have
a specific interpretation in the theory of modal logic.

32

Two generalizations:

1. There is more than one relation

2. The relations can be of arbitrary arity

Relational structure with labels: 〈W ,R,P1,P2, . . .〉 where W 6= ∅, R
is a (binary or n-ary) relation and for each k ≥ 1, Pk is unary relation
(i.e., Pk ⊆W).

Warning: Although a relational structure with labels is just a relational
structure (with a binary relation and multiple unary relations), they have
a specific interpretation in the theory of modal logic.

Eric Pacuit 32

Two generalizations:

1. There is more than one relation

2. The relations can be of arbitrary arity

Relational structure with labels: 〈W ,R,P1,P2, . . .〉 where W 6= ∅, R
is a (binary or n-ary) relation and for each k ≥ 1, Pk is unary relation
(i.e., Pk ⊆W).

Warning: Although a relational structure with labels is just a relational
structure (with a binary relation and multiple unary relations), they have
a specific interpretation in the theory of modal logic.

32

Examples

I Epistemic models

I Temporal models

I Transition systems

I Social networks

I Other examples (see [ML], Section 1.1)

33

Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?

Claim: After first question, the children answer “I don’t know”, after the
second question the muddy children answer “I have mud on my
forehead!” (but the clean child is still in the dark). Then the clean child
says, “Oh, I must be clean.”

34

Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?

Claim: After first question, the children answer “I don’t know”, after the
second question the muddy children answer “I have mud on my
forehead!” (but the clean child is still in the dark). Then the clean child
says, “Oh, I must be clean.”

34

Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?

Claim: After first question, the children answer “I don’t know”, after the
second question the muddy children answer “I have mud on my
forehead!” (but the clean child is still in the dark). Then the clean child
says, “Oh, I must be clean.”

34

Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?

Claim: After first question, the children answer “I don’t know”, after the
second question the muddy children answer “I have mud on my
forehead!” (but the clean child is still in the dark). Then the clean child
says, “Oh, I must be clean.”

34

Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?

Claim: After first question, the children answer “I don’t know”,

after the
second question the muddy children answer “I have mud on my
forehead!” (but the clean child is still in the dark). Then the clean child
says, “Oh, I must be clean.”

34

Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?

Claim: After first question, the children answer “I don’t know”, after the
second question the muddy children answer “I have mud on my
forehead!” (but the clean child is still in the dark).

Then the clean child
says, “Oh, I must be clean.”

34

Muddy Children

Three children are outside playing. Two of them get mud on their
forehead. They cannot see or feel the mud on their own foreheads, but
can see who is dirty.

Their mother enters the room and says “At least one of you have mud
on your forehead”.

Then the children are repeatedly asked “do you know if you have mud on
your forehead?”

What happens?

Claim: After first question, the children answer “I don’t know”, after the
second question the muddy children answer “I have mud on my
forehead!” (but the clean child is still in the dark). Then the clean child
says, “Oh, I must be clean.”

34

Muddy Children

Assume:

I There are three children: Ann, Bob and Charles.

I (Only) Ann and Bob have mud on their forehead.

C C C

Ann Bob Charles

state-of-affairs

C C C C C C C C C

35

Muddy Children

Assume:

I There are three children: Ann, Bob and Charles.

I (Only) Ann and Bob have mud on their forehead.

C C C

Ann Bob Charles

state-of-affairs

C C C C C C C C C

35

Muddy Children

Assume:

I There are three children: Ann, Bob and Charles.

I (Only) Ann and Bob have mud on their forehead.

C C C

Ann Bob Charles

state-of-affairs

C C C C C C C C C

35

Muddy Children

Assume:

I There are three children: Ann, Bob and Charles.

I (Only) Ann and Bob have mud on their forehead.

C C C

Ann Bob Charles

state-of-affairs

C C C C C C C C C

35

Muddy Children

Assume:

I There are three children: Ann, Bob and Charles.

I (Only) Ann and Bob have mud on their forehead.

C C C

Ann Bob Charles

state-of-affairs

C C C C C C C C C

35

Muddy Children

Assume:

I There are three children: Ann, Bob and Charles.

I (Only) Ann and Bob have mud on their forehead.

C C C

Ann Bob Charles

state-of-affairs

C C C C C C C C C

35

Muddy Children

Assume:

I There are three children: Ann, Bob and Charles.

I (Only) Ann and Bob have mud on their forehead.

C C C

Ann Bob Charles

state-of-affairs

C C C C C C C C C

35

Muddy Children

Assume:

I There are three children: Ann, Bob and Charles.

I (Only) Ann and Bob have mud on their forehead.

C C C

Ann Bob Charles

state-of-affairs

C C C C C C C C C

35

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

All 8 possible situations

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

The actual situation

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Ann’s uncertainty

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Bob’s uncertainty

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Charles’ uncertainty

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Agent 2’s uncertainty

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

None of the children know if they are muddy

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

None of the children know if they are muddy

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

“At least one has mud on their forehead.”

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

“At least one has mud on their forehead.”

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

“Who has mud on their forehead?”

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

“Who has mud on their forehead?”

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

No one steps forward.

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

No one steps forward.

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

“Who has mud on their forehead?”

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Charles does not know he is clean.

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Ann and Bob step forward.

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Now, Charles knows he is clean.

36

Muddy Children

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Now, Charles knows he is clean.

36

Time

One of the most successful applications of modal logic is in the “logic of
time”.

Many variations

I discrete or continuous

I branching or linear

I point based or interval based

V. Goranko and A. Galton. Temporal Logic. Stanford Encyclopedia of Philosophy:
http://plato.stanford.edu/entries/logic-temporal/.

I. Hodkinson and M. Reynolds. Temporal Logic. Handbook of Modal Logic, 2008.

37

http://plato.stanford.edu/entries/logic-temporal/

Time

One of the most successful applications of modal logic is in the “logic of
time”.

Many variations

I discrete or continuous

I branching or linear

I point based or interval based

V. Goranko and A. Galton. Temporal Logic. Stanford Encyclopedia of Philosophy:
http://plato.stanford.edu/entries/logic-temporal/.

I. Hodkinson and M. Reynolds. Temporal Logic. Handbook of Modal Logic, 2008.

37

http://plato.stanford.edu/entries/logic-temporal/

Models of Time

T = 〈T , <〉 where

I T is a set of time points (or moments),

I < ⊆ T × T is the precedence relation: s < t means “time point s
precedes time point t (or s occurs earlier than t)” and

< is typically assumed to be irreflexive and transitive (a strict partial
order).

Examples: 〈N, <〉, 〈Z, <〉, 〈Q, <〉, 〈R, <〉

38

Models of Time

T = 〈T , <〉 where

I T is a set of time points (or moments),

I < ⊆ T × T is the precedence relation: s < t means “time point s
precedes time point t (or s occurs earlier than t)” and

< is typically assumed to be irreflexive and transitive (a strict partial
order).

Examples: 〈N, <〉, 〈Z, <〉, 〈Q, <〉, 〈R, <〉

38

Models of Time

T = 〈T , <〉 where

I T is a set of time points (or moments),

I < ⊆ T × T is the precedence relation: s < t means “time point s
precedes time point t (or s occurs earlier than t)” and

< is typically assumed to be irreflexive and transitive (a strict partial
order).

Examples: 〈N, <〉, 〈Z, <〉, 〈Q, <〉, 〈R, <〉

38

Other properties of <

I Linearity: for all s, t ∈ T , s < t or s = t of t < s

I Past-linear: for all s, x , y ∈ T , if x < s and y < s, then either
x < y or x = y or y < x

I Denseness for all s, t ∈ T , if s < t then there is a z ∈ T such that
s < z and z < t

I Discreteness: for all s, t ∈ T , if s < t then there is a z such that
(s < z and there is no u such that s < u and u < z)

39

Branching Time

Each moment t ∈ T can be decided into the Past(t) = {s ∈ T | s < t}
and the Future(t) = {s ∈ T | t < s}

Typically, it is assumed that the past is linear, but the future may be
branching.

Fϕ: “it will be the case that ϕ”

ϕ will be the case “in the case in the actual course of events” or “no
matter what course of events”

40

Branching Time

Each moment t ∈ T can be decided into the Past(t) = {s ∈ T | s < t}
and the Future(t) = {s ∈ T | t < s}

Typically, it is assumed that the past is linear, but the future may be
branching.

Fϕ: “it will be the case that ϕ”

ϕ will be the case “in the case in the actual course of events” or “no
matter what course of events”

40

Branching Time Logics

A branch b in 〈T , <〉 is a maximal linearly ordered subset of T

s ∈ T is on a branch b of T provided s ∈ b (we also say “b is a branch
going through t”).

41

Temporal Logics

I Linear Time Temporal Logic: Reasoning about computation paths:

Fϕ: ϕ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foun-
dations of Computer Science (1977).

I Branching Time Temporal Logic: Allows quantification over paths:

∃Fϕ: there is a path in which ϕ is eventually true.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons
using Branching-time Temporal-logic Specifications. In Proceedings Workshop on Logic
of Programs, LNCS (1981).

42

Temporal Logics

I Linear Time Temporal Logic: Reasoning about computation paths:

Fϕ: ϕ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foun-
dations of Computer Science (1977).

I Branching Time Temporal Logic: Allows quantification over paths:

∃Fϕ: there is a path in which ϕ is eventually true.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons
using Branching-time Temporal-logic Specifications. In Proceedings Workshop on Logic
of Programs, LNCS (1981).

42

Temporal Logics

I Linear Time Temporal Logic: Reasoning about computation paths:

Fϕ: ϕ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foun-
dations of Computer Science (1977).

I Branching Time Temporal Logic: Allows quantification over paths:

∃Fϕ: there is a path in which ϕ is eventually true.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons
using Branching-time Temporal-logic Specifications. In Proceedings Workshop on Logic
of Programs, LNCS (1981).

42

Interval Values

J. Allen and G. Ferguson. Actions and Events in Interval Temporal Logics. Journal of
Logic and Computation, 1994.

J. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of
the ACM, 38:4, pp. 935 - 962, 1991.

J. van Benthem. Logics of Time. Kluwer, 1991.

43

Interval Temporal Logics

Let T = 〈T , <〉 be a frame and I (T) = {[a, b] | a, b ∈ T and a ≤ b} be
the set of intervals over T

Interval-based relational structure: 〈I (T), {RX}〉 where
RX ⊆ I (T)× I (T).

44

Interval Temporal Logics

Intervals of the form [a, a] are called point intervals; if
these are excluded, the resulting semantics is called strict
interval semantics (non-strict otherwise). Our results hold in
either semantics. There are 12 different non-trivial relations
(excluding the equality) between two intervals in a linear
order, often called Allen’s relations [3]: the six relations
depicted in Table I and their inverses. One can naturally
associate a modal operator hXi with each Allen’s relation
RX . For each operator hXi, we denote by hXi its transpose,
corresponding to the inverse relation.

Halpern and Shoham’s logic HS is a multi-modal logic
with formulae built over a set AP of propositional letters,
the propositional connectives _ and ¬, and a set of modal
unary operators associated with all Allen’s relations. For
each subset {RX1 , . . . , RXk

} of these relations, we define
the HS fragment X1X2 . . . Xk, whose formulae are defined
by the grammar:

' ::= p | ⇡ | ¬' | ' _ ' | hX1i' | . . . | hXki',

where ⇡ is a modal constant, true precisely at point intervals.
We omit ⇡ when it is definable in the language or when
the strict semantics is adopted. The other propositional
connectives, like ^ and !, and the dual modal operators
[X] are defined as usual, e.g., [X]' ⌘ ¬hXi¬'.

Let I(D) be the set of all intervals over D. The semantics
of an interval-based temporal logic is given in terms of
interval models M = hD, V i, where V : AP 7! 2I(D) is
the valuation function that assigns to every p 2 AP the
set of intervals V (p) over which it holds. The truth of a
formula over a given interval [a, b] in a model M is defined
by structural induction on formulae:

• M, [a, b] � ⇡ iff a = b;
• M, [a, b] � p iff [a, b] 2 V (p), for all p 2 AP;
• M, [a, b] � ¬ iff it is not the case that M, [a, b] � ;
• M, [a, b] � ' _ iff M, [a, b] � ' or M, [a, b] � ;
• M, [a, b] � hXii iff there exists an interval [c, d] such

that [a, b] RXi
[c, d], and M, [c, d] � ,

Satisfiability is defined as usual.
The notion of sub-interval (contains) can be declined into

two variants, namely, proper sub-interval ([a, b] is a proper
sub-interval of [c, d] if c  a, b  d, and [a, b] 6= [c, d]),
and strict sub-interval (when both c < a and b < d). Both
variants will play a central role in our technical results;
notice that by sub-interval we usually mean the proper one.

III. A SHORT SUMMARY OF UNDECIDABILITY RESULTS

In this section, we first summarize the main undecidability
results for fragments of HS. Then, we state the main results
of this paper (Theorem III.1), which extend the previous
ones under two different aspects: (i) we prove a number of
new undecidability results for proper sub-fragments of logics
that were already known to be undecidable, and (ii) we
show how to adapt various existing undecidability proofs to
a more general class of linear orders. The first undecidability

hAi
hLi
hBi
hEi
hDi
hOi

[a, b]RA[c, d] , b = c

[a, b]RL[c, d] , b < c

[a, b]RB [c, d] , a = c, d < b

[a, b]RE [c, d] , b = d, a < c

[a, b]RD[c, d] , a < c, d < b

[a, b]RO[c, d] , a < c < b < d

a b

c d

c d

c d

c d

c d

c d

Table I
ALLEN’S INTERVAL RELATIONS AND THE CORRESPONDING HS

MODALITIES.

result, for full HS, was obtained by Halpern and Shoham [4].
Since then, several other results have been published, starting
from Lodaya [14], that proved the undecidability of the
fragment BE, when interpreted over dense linear orders,
or, alternatively, over h!,<i, where infinite intervals are
allowed. In [9], Bresolin at al. proved the undecidability
of a number of interesting fragments, such as AD⇤E⇤,
AD⇤O, AD⇤B⇤, AD⇤O, BE, BE, and BE, where, for each
X 2 {A, L,B,E,D,O}, X⇤ denotes either X or X. In [10],
the undecidability of all (HS-)extensions of the fragment O
(and thus of O), except for those with the modalities hLi and
hLi, has been proved when interpreted in any class of linear
orders with at least one infinite ascending (or descending) se-
quence. In [11], the one-modality fragment O alone has been
proved undecidable, but assuming discreteness. Recently,
Marcinkowski et al. have first shown the undecidability of
B⇤D⇤ on finite and discrete linear orders [15], and, then,
strengthened that result to the one-modality fragments D and
D [12].

Here, we first extend and complete the results from [10],
[11] by providing an undecidability proof that assumes
neither discreteness nor the presence of an infinite sequence.
Second, we strengthen the undecidability results given in [9]
by (i) proving that the logics B⇤E⇤ are undecidable over the
class of finite linear orders, and (ii) by showing that the weak
fragments A⇤D⇤ are undecidable with respect to all relevant
classes of linear orders. As a consequence, we obtain a
very sharp characterization of the decidability/undecidability
border for the family of HS-fragments, as the undecidability
for the mentioned logics holds over the class of all finite
linear orders as well as over the classical orders based on
N, Z, Q, and R.

Theorem III.1. The satisfiability problem for the HS frag-
ments O, O, A⇤D⇤, B⇤E⇤ is undecidable in any class of
linear orders that contains, for each n > 0, at least one
linear order with length greater than n.

Due to space constraints, we only detail the case of O.
First, we show how to relax the discreteness hypothesis;

45

Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

46

Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

46

Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

46

Computational vs. Behavioral Structures

x = 1q0

x = 2q1 q0q0q0 q0q0q1 q0q1q0 q0q1q1

q0q0 q0q1

q0

...

47

Examples

6-2 CHAPTER 6. LOGIC AND ACTION

analyzing the interplay of action and static descriptions of the world before and after the
action.

It turns out that structured actions can be viewed as compositions of basic actions, with
only a few basic composition recipes: conditional execution, choice, sequence, and repe-
tition. In some cases it is also possible to undo or reverse an action. This gives a further
recipe: if you are editing a file, you can undo the last ‘delete word’ action, but you cannot
undo the printing of your file.

Conditional or guarded execution (“remove from fire when cheese starts to melt”), se-
quence (“pour eggs in and swirl; cook for about three minutes; gently slide out of the
pan”), and repetition (“keep stirring until soft”) are ways in which a cook combines his
basic actions in preparing a meal. But these are also the strategies for a lawyer when plan-
ning her defence (“only discuss the character of the defendant if the prosecution forces
us”, “first convince the jury of the soundness of the alibi, next cast doubt on the reliability
of the witness for the prosecution”), or the basic layout strategies for a programmer in
designing his code. In this chapter we will look at the logic of these ways of combining
actions.

Action structure does not depend on the nature of the basic actions: it applies to actions
in the world, such as preparing breakfast, cleaning dishes, or spilling coffee over your
trousers. It also applies to communicative actions, such as reading an English sentence
and updating one’s state of knowledge accordingly, engaging in a conversation, sending an
email with cc’s, telling your partner a secret. These actions typically change the cognitive
states of the agents involved. Finally, it applies to computations, i.e., actions performed
by computers. Examples are computing the factorial function, computing square roots,
etc. Such actions typically involve changing the memory state of a machine. Of course
there are connections between these categories. A communicative action will usually
involve some computation involving memory, and the utterance of an imperative (‘Shut
the door!’) is a communicative action that is directed towards action in the world.

There is a very general way to model action and change, a way that we have in fact seen
already. The key is to view a changing world as a set of situations linked by labeled arcs.
In the context of epistemic logic we have looked at a special case of this, the case where
the arcs are epistemic accessibility relations: agent relations that are reflexive, symmetric,
and transitive. Here we drop this restriction.

Consider an action that can be performed in only one possible way. Toggling a switch for
switching off your alarm clock is an example. This can be pictured as a transition from
an initial situation to a new situation:

alarm on alarm off
toggle

Toggling the switch once more will put the alarm back on:

6.1. ACTIONS IN GENERAL 6-3

alarm on alarm off alarm on
toggle toggle

Some actions do not have determinate effects. Asking your boss for a promotion may get
you promoted, but it may also get you fired, so this action can be pictured like this:

employed

promoted

fired

ask for promotion

Another example: opening a window. This brings about a change in the world, as follows.

open window

The action of window-opening changes a state in which the window is closed into one in
which it is open. This is more subtle than toggling an alarm clock, for once the window is
open a different action is needed to close it again. Also, the action of opening a window
can only be applied to closed windows, not to open ones. We say: performing the action
has a precondition or presupposition.

In fact, the public announcements from the previous chapter can also be viewed as (com-
municative) actions covered by our general framework. A public announcement is an
action that effects a change in an information model.

0 : p 1 : pbc
abc abc

)!p) 0 : p

abc

48

Examples

6-2 CHAPTER 6. LOGIC AND ACTION

analyzing the interplay of action and static descriptions of the world before and after the
action.

It turns out that structured actions can be viewed as compositions of basic actions, with
only a few basic composition recipes: conditional execution, choice, sequence, and repe-
tition. In some cases it is also possible to undo or reverse an action. This gives a further
recipe: if you are editing a file, you can undo the last ‘delete word’ action, but you cannot
undo the printing of your file.

Conditional or guarded execution (“remove from fire when cheese starts to melt”), se-
quence (“pour eggs in and swirl; cook for about three minutes; gently slide out of the
pan”), and repetition (“keep stirring until soft”) are ways in which a cook combines his
basic actions in preparing a meal. But these are also the strategies for a lawyer when plan-
ning her defence (“only discuss the character of the defendant if the prosecution forces
us”, “first convince the jury of the soundness of the alibi, next cast doubt on the reliability
of the witness for the prosecution”), or the basic layout strategies for a programmer in
designing his code. In this chapter we will look at the logic of these ways of combining
actions.

Action structure does not depend on the nature of the basic actions: it applies to actions
in the world, such as preparing breakfast, cleaning dishes, or spilling coffee over your
trousers. It also applies to communicative actions, such as reading an English sentence
and updating one’s state of knowledge accordingly, engaging in a conversation, sending an
email with cc’s, telling your partner a secret. These actions typically change the cognitive
states of the agents involved. Finally, it applies to computations, i.e., actions performed
by computers. Examples are computing the factorial function, computing square roots,
etc. Such actions typically involve changing the memory state of a machine. Of course
there are connections between these categories. A communicative action will usually
involve some computation involving memory, and the utterance of an imperative (‘Shut
the door!’) is a communicative action that is directed towards action in the world.

There is a very general way to model action and change, a way that we have in fact seen
already. The key is to view a changing world as a set of situations linked by labeled arcs.
In the context of epistemic logic we have looked at a special case of this, the case where
the arcs are epistemic accessibility relations: agent relations that are reflexive, symmetric,
and transitive. Here we drop this restriction.

Consider an action that can be performed in only one possible way. Toggling a switch for
switching off your alarm clock is an example. This can be pictured as a transition from
an initial situation to a new situation:

alarm on alarm off
toggle

Toggling the switch once more will put the alarm back on:

6.1. ACTIONS IN GENERAL 6-3

alarm on alarm off alarm on
toggle toggle

Some actions do not have determinate effects. Asking your boss for a promotion may get
you promoted, but it may also get you fired, so this action can be pictured like this:

employed

promoted

fired

ask for promotion

Another example: opening a window. This brings about a change in the world, as follows.

open window

The action of window-opening changes a state in which the window is closed into one in
which it is open. This is more subtle than toggling an alarm clock, for once the window is
open a different action is needed to close it again. Also, the action of opening a window
can only be applied to closed windows, not to open ones. We say: performing the action
has a precondition or presupposition.

In fact, the public announcements from the previous chapter can also be viewed as (com-
municative) actions covered by our general framework. A public announcement is an
action that effects a change in an information model.

0 : p 1 : pbc
abc abc

)!p) 0 : p

abc

48

Examples

6.1. ACTIONS IN GENERAL 6-3

alarm on alarm off alarm on
toggle toggle

Some actions do not have determinate effects. Asking your boss for a promotion may get
you promoted, but it may also get you fired, so this action can be pictured like this:

employed

promoted

fired

ask for promotion

Another example: opening a window. This brings about a change in the world, as follows.

open window

The action of window-opening changes a state in which the window is closed into one in
which it is open. This is more subtle than toggling an alarm clock, for once the window is
open a different action is needed to close it again. Also, the action of opening a window
can only be applied to closed windows, not to open ones. We say: performing the action
has a precondition or presupposition.

In fact, the public announcements from the previous chapter can also be viewed as (com-
municative) actions covered by our general framework. A public announcement is an
action that effects a change in an information model.

0 : p 1 : pbc
abc abc

)!p) 0 : p

abc

49

Programs

Act is a set of primitive actions, or programs

A program is generated by the following grammar:

a | α;β | α ∪ β | α∗

I α;β: concatenation, do α then β

I α ∪ β: non-deterministic choice: choose to execute α or β

I α∗: iteration: execute α some finite number of times.

50

Propositional Dynamic Logic

〈W , {Ra}a∈Act〉

If α is a program, then Rα ⊆W ×W where wRαv means executing α in
state w leads to state v .

Rα;β = R ◦ R = {(w , v) | there is a u such that wRαu and uRβv}

Rα∪β = Rα ∪ Rβ

Rα∗ = ∪n≥1Rn
α, where R1 = R and Rn+1 = R ◦ Rn

D. Harel, D. Kozen and Tiuryn. Dynamic Logic. 2001.

51

Propositional Dynamic Logic

〈W , {Ra}a∈Act〉

If α is a program, then Rα ⊆W ×W where wRαv means executing α in
state w leads to state v .

Rα;β = R ◦ R = {(w , v) | there is a u such that wRαu and uRβv}

Rα∪β = Rα ∪ Rβ

Rα∗ = ∪n≥1Rn
α, where R1 = R and Rn+1 = R ◦ Rn

D. Harel, D. Kozen and Tiuryn. Dynamic Logic. 2001.

51

Examples

X Epistemic models

X Temporal models

X Transition systems

I Social networks

I Other examples (see [ML], Section 1.1)

52

Relational Model

Aw1

Bw2 B w3

B,C w4 A,B w5

1. Set of states

Label the states

Accessibility relation

53

Relational Model

Aw1

Bw2 B w3

B,C w4 A,B w5

1. Set of states

2. Label the states

Accessibility relation

53

Relational Model

Aw1

Bw2 B w3

B,C w4 A,B w5

1. Set of states

2. Label the states

3. Accessibility relation

53

Relational Model

Aw1

Bw2 B w3

B,C w4 A,B w5

1. Set of states

2. Label the states

3. Accessibility relation

denoted w3Rw5

53

Frame: 〈W ,R〉, where W 6= ∅ and R ⊆W ×W

Model: Suppose that F = 〈W ,R〉 is a frame. The tuple 〈W ,R,V 〉 is a
model based on F where V : At→ ℘(W) is a valuation function.

I w ∈ V (p) means that p is true at w .

Pointed Model Suppose that M = 〈W ,R,V 〉 is a model. If w ∈W ,
then (M,w) is called a pointed model.

54

Frame: 〈W ,R〉, where W 6= ∅ and R ⊆W ×W

Model: Suppose that F = 〈W ,R〉 is a frame. The tuple 〈W ,R,V 〉 is a
model based on F where V : At→ ℘(W) is a valuation function.

I w ∈ V (p) means that p is true at w .

Pointed Model Suppose that M = 〈W ,R,V 〉 is a model. If w ∈W ,
then (M,w) is called a pointed model.

54

Frame: 〈W ,R〉, where W 6= ∅ and R ⊆W ×W

Model: Suppose that F = 〈W ,R〉 is a frame. The tuple 〈W ,R,V 〉 is a
model based on F where V : At→ ℘(W) is a valuation function.

I w ∈ V (p) means that p is true at w .

Pointed Model Suppose that M = 〈W ,R,V 〉 is a model. If w ∈W ,
then (M,w) is called a pointed model.

54

Truth of Modal Formulas

Suppose that M = 〈W ,R,V 〉 is a model. Truth of a modal formula
ϕ ∈ L(At) at a state w in M, denoted M,w |= ϕ, is defined as follows:

I M,w |= p iff w ∈ V (p) (where p ∈ At)

I M,w 6|= ⊥
I M,w |= ¬ϕ iff M,w 6|= ϕ

I M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ

I M,w |= 3ϕ iff there is a v ∈W such that wRv and M, v |= ϕ

55

Truth of Modal Formulas

I M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

I M,w |= ϕ→ ψ iff if M,w |= ϕ, then M,w |= ψ iff either
M,w 6|= ϕ or M,w |= ψ

I M,w |= 2ϕ iff for all v ∈W , if wRv then M, v |= ϕ

56

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w4 |= B ∧ C

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w4 |= B ∧ C

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w3 |= 2B∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w3 |= 2B∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w3 |= 3C∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w3 |= 3C∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w3 6|= 2C∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w3 6|= 2C∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 |= 32B∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 |= 32B∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 |= 32B∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w5 |= 2C∧

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w5 |= 2(B ∧ ¬B)

57

Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w5 |= ¬3B∧

57

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 |= 2B ∧ B?

w1 |= 33B?

w1 |= 333B?

w1 |= 22B?

w1 |= 23C?

w1 |= 33C?

58

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 6|= 2B ∧ B

w1 |= 33B?

w1 |= 333B?

w1 |= 22B?

w1 |= 23C?

w1 |= 33C?

58

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 6|= 2B ∧ B

w1 |= 33B

w1 |= 333B

w1 |= 22B?

w1 |= 23C?

w1 |= 33C?

58

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 6|= 2B ∧ B

w1 |= 33B

w1 |= 333B

w1 |= 22B

w1 |= 23C?

w1 |= 33C?

58

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 6|= 2B ∧ B

w1 |= 33B

w1 |= 333B

w1 6|= 22B

w1 |= 23C?

w1 |= 33C?

58

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 6|= 2B ∧ B

w1 |= 33B

w1 |= 333B

w1 6|= 22B

w1 6|= 23C

w1 |= 33C?

58

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 6|= 2B ∧ B

w1 |= 33B

w1 |= 333B

w1 |= 22B

w1 6|= 23C

w1 |= 33C?

58

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 6|= 2B ∧ B

w1 |= 33B

w1 |= 333B

w1 |= 22B

w1 6|= 23C

w1 |= 33C

58

Aw1

Bw2 B w3

B,C w4 A,B w5

w1 6|= 2B ∧ B

w1 |= 33B

w1 |= 333B

w1 |= 22B

w1 6|= 23C

w1 |= 33C

58

ϕ is satisfiable means that there is a model M = 〈W ,R,V 〉 and
w ∈W such that M,w |= ϕ.

59

Validity

Valid on a model M = 〈W ,V ,R〉
M |= ϕ: for all w ∈W , M,w |= ϕ

Valid on a frame F = 〈W ,R〉
F |= ϕ: for all M based on F , for all w ∈W , M,w |= ϕ
F |= ϕ: for all functions V , for all w ∈W , 〈W ,R,V 〉,w |= ϕ

Valid at a state on a frame F = 〈W ,R〉 with w ∈W

F ,w |= ϕ: for all M based on F , M,w |= ϕ

Valid in a class F of frames:

|=F ϕ: for all F ∈ F, F |= ϕ

60

Validity

Valid on a model M = 〈W ,V ,R〉
M |= ϕ: for all w ∈W , M,w |= ϕ

Valid on a frame F = 〈W ,R〉
F |= ϕ: for all M based on F , for all w ∈W , M,w |= ϕ

F |= ϕ: for all functions V , for all w ∈W , 〈W ,R,V 〉,w |= ϕ

Valid at a state on a frame F = 〈W ,R〉 with w ∈W

F ,w |= ϕ: for all M based on F , M,w |= ϕ

Valid in a class F of frames:

|=F ϕ: for all F ∈ F, F |= ϕ

60

Validity

Valid on a model M = 〈W ,V ,R〉
M |= ϕ: for all w ∈W , M,w |= ϕ

Valid on a frame F = 〈W ,R〉
F |= ϕ: for all M based on F , for all w ∈W , M,w |= ϕ
F |= ϕ: for all functions V , for all w ∈W , 〈W ,R,V 〉,w |= ϕ

Valid at a state on a frame F = 〈W ,R〉 with w ∈W

F ,w |= ϕ: for all M based on F , M,w |= ϕ

Valid in a class F of frames:

|=F ϕ: for all F ∈ F, F |= ϕ

60

Validity

Valid on a model M = 〈W ,V ,R〉
M |= ϕ: for all w ∈W , M,w |= ϕ

Valid on a frame F = 〈W ,R〉
F |= ϕ: for all M based on F , for all w ∈W , M,w |= ϕ
F |= ϕ: for all functions V , for all w ∈W , 〈W ,R,V 〉,w |= ϕ

Valid at a state on a frame F = 〈W ,R〉 with w ∈W

F ,w |= ϕ: for all M based on F , M,w |= ϕ

Valid in a class F of frames:

|=F ϕ: for all F ∈ F, F |= ϕ

60

Validity

Valid on a model M = 〈W ,V ,R〉
M |= ϕ: for all w ∈W , M,w |= ϕ

Valid on a frame F = 〈W ,R〉
F |= ϕ: for all M based on F , for all w ∈W , M,w |= ϕ
F |= ϕ: for all functions V , for all w ∈W , 〈W ,R,V 〉,w |= ϕ

Valid at a state on a frame F = 〈W ,R〉 with w ∈W

F ,w |= ϕ: for all M based on F , M,w |= ϕ

Valid in a class F of frames:

|=F ϕ: for all F ∈ F, F |= ϕ

60

Model validity

p w1

q, r w2 p, q w3

M |= 2q

validity on a model is not closed under substitution (M 6|= 2p)

61

Frame validity

Some frame validities:

I (2q ∧2q)→ 2(p ∧ q)

I 2>
I 2p ↔ ¬3¬p
I 2(p → q)→ (2p → 2q)

Some frame non-validities:

I 2p ∨2¬p (compare with the validity 2p ∨ ¬2p)

I (3p ∧3q)→ 3(p ∧ q)

I 2(p ∨ q)→ (2p ∨2q)

I 2p → p

62

Valid at a state

ϕw1

ϕ

w3

ϕ

w2

ϕ

w4

F ,w1 |= 23ϕ→ 32ϕ

63

Valid at a state

ϕw1

ϕ

w3

ϕ

w2

ϕ

w4

F ,w1 |= 23ϕ→ 32ϕ

63

Valid at a state

ϕw1

ϕ

w3

ϕ

w2

ϕ

w4

F ,w1 |= 23ϕ→ 32ϕ

63

Propositional Dynamic Logic

Let Act be a set of atomic programs and At a set of atomic propositions.

Formulas of PDL have the following syntactic form:

ϕ := p | ⊥ | ¬ϕ | ϕ ∨ ψ | [α]ϕ

α := a | α ∪ β | α;β | α∗ | ϕ?

where p ∈ At and a ∈ Act.

[α]ϕ is intended to mean “after executing the program α, ϕ is true”

64

Propositional Dynamic Logic

Semantics: M = 〈W , {Ra | a ∈ P},V 〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W)

I Rα∪β := Rα ∪ Rβ
I Rα;β := Rα ◦ Rβ
I Rα∗ := ∪n≥0Rn

α

I Rϕ? = {(w ,w) | M,w |= ϕ}

M,w |= [α]ϕ iff for each v , if wRαv then M, v |= ϕ

65

Propositional Dynamic Logic

Some validities:

1. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

2. [α;β]ϕ↔ [α][β]ϕ

3. [ψ?]ϕ↔ (ψ → ϕ)

4. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

5. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ

66

Propositional Dynamic Logic

Some validities:

1. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

2. [α;β]ϕ↔ [α][β]ϕ

3. [ψ?]ϕ↔ (ψ → ϕ)

4. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ (Fixed-Point Axiom)

5. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ (Induction Axiom)

67

Logical consequence

Suppose that Γ is a set of formulas and F is a set of frames. We write
M,w |= Γ iff M,w |= α for all α ∈ Γ.

Local: Γ |=F ϕ iff for all frames F ∈ F, for all models M based on F and
all states w in M, M,w |= Γ implies M,w |= ϕ

Global: Γ |=g
F ϕ iff for all frames F ∈ F, for all models M based on F ,

M |= Γ implies M |= ϕ

68

Logical consequence

Suppose that Γ is a set of formulas and F is a set of frames. We write
M,w |= Γ iff M,w |= α for all α ∈ Γ.

Local: Γ |=F ϕ iff for all frames F ∈ F, for all models M based on F and
all states w in M, M,w |= Γ implies M,w |= ϕ

Global: Γ |=g
F ϕ iff for all frames F ∈ F, for all models M based on F ,

M |= Γ implies M |= ϕ

68

Logical consequence

Suppose that Γ is a set of formulas and F is a set of frames. We write
M,w |= Γ iff M,w |= α for all α ∈ Γ.

Local: Γ |=F ϕ iff for all frames F ∈ F, for all models M based on F and
all states w in M, M,w |= Γ implies M,w |= ϕ

Global: Γ |=g
F ϕ iff for all frames F ∈ F, for all models M based on F ,

M |= Γ implies M |= ϕ

68

{p} |=g 2p {p} 6|= 2p

69

Definability

Suppose that M = 〈W ,R,V 〉 is a relational model.

[[·]]M : L → ℘(W) defined as [[ϕ]]M = {w | M,w |= ϕ}.

[[p]]M = V (p)

[[¬ϕ]]M = W − [[ϕ]]M

[[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M

[[2ϕ]]M = mR([[ϕ]]M)

where mR(X) = {w | R(w) ⊆ X}

X ⊆W is definable by modal formula if there is some ϕ ∈ L such that
X = [[ϕ]]M.

70

Definability

Suppose that M = 〈W ,R,V 〉 is a relational model.

[[·]]M : L → ℘(W) defined as [[ϕ]]M = {w | M,w |= ϕ}.

[[p]]M = V (p)

[[¬ϕ]]M = W − [[ϕ]]M

[[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M

[[2ϕ]]M = mR([[ϕ]]M)

where mR(X) = {w | R(w) ⊆ X}

X ⊆W is definable by modal formula if there is some ϕ ∈ L such that
X = [[ϕ]]M.

70

Defining States

w2

w1 w4

w3

I {w4} = 2⊥
I {w3} = 32⊥ ∧22⊥
I {w2} = 32⊥ ∧33>
I {w1} = 3(32⊥ ∧22⊥)

71

Defining States

w2

w1 w4

w3

I {w4} = [[2⊥]]

I {w3} = 32⊥ ∧22⊥
I {w2} = 32⊥ ∧33>
I {w1} = 3(32⊥ ∧22⊥)

71

Defining States

w2

w1 w4

w3

I {w4} = [[2⊥]]

I {w3} = [[32⊥ ∧22⊥]]

I {w2} = 32⊥ ∧33>
I {w1} = 3(32⊥ ∧22⊥)

71

Defining States

w2

w1 w4

w3

I {w4} = [[2⊥]]

I {w3} = [[32⊥ ∧22⊥]]

I {w2} = [[32⊥ ∧33>]]

I {w1} = 3(32⊥ ∧22⊥)

71

Defining States

w2

w1 w4

w3

I {w4} = [[2⊥]]

I {w3} = [[32⊥ ∧22⊥]]

I {w2} = [[32⊥ ∧33>]]

I {w1} = [[3(32⊥ ∧22⊥)]]

71

Defining States

w2

w1 w4

w3

I {w4} = [[2⊥]]

I {w2,w3} = [[32⊥ ∧22⊥]]

I {w1} = [[3(32⊥ ∧22⊥)]]

71

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

What is the difference between states w1 and v1?

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

What is the difference between states w1 and v1?

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

Is there a modal formula true at w1 but not at v1?

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

w1 |= 23¬A but v1 6|= 23¬A.

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

w1 |= 23¬A but v1 6|= 23¬A.

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

w1 |= 23¬A but v1 6|= 23¬A.

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

w1 |= 23¬A but v1 6|= 23¬A.

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

w1 |= 23¬A but v1 6|= 23¬A.

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

What about now? Is there a modal formula true at w1 but not v1?

72

Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

No modal formula can distinguish w1 and v1!

72

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

s

K

u

N

73

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

s

K

u

N

73

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

s

K

u

N

73

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

s

K

u

N

73

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)

2(2⊥ ∨32⊥)

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

s

K

u

N

73

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

2(2⊥ ∨32⊥)

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

s

K

u

N

73

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

2(2⊥ ∨32⊥)

2(2⊥ ∨32⊥)

s

K

u

N

73

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

2(2⊥ ∨32⊥)

s

K

u

N

73

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

s

K

t

M

u

N

2(2⊥ ∨32⊥)

s

K

t

M

2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)2(2⊥ ∨32⊥)

s

K

u

N

73

I Logical issues: expressive power; axiomatizing logical consequence;
proof theory; decidability/complexity of satisfiability/model checking

I Language extensions: Hybrid logic; First-order extensions;
Propositional quantifiers; Fixed-point operators

I Alternative semantics: Topological models; Neighborhood models;
Algebraic models; Possibility semantics

I Applications: Temporal logic; (Dynamic) Epistemic logic

74

Conferences/Journals

TARK (www.tark.org): July 17-19, 2019, Toulouse, Deadline: early
April

LORI (golori.org/lori2019): October 18-21, 2019, Southwest
University, Chongqing, China, Deadline: May 13

LOFT (faculty.econ.ucdavis.edu/faculty/bonanno/loft.html):
next conference in 2020

AiML (www.aiml.net): next conference in 2020

ESSLLI (esslli2019.folli.info): Summer school, Riga, Latvia,
August 5 - 16 (also see NASSLLI)

Journals: Review of Symbolic Logic; Journal of Philosophical Logic;
Journal of Logic, Language and Information; Synthese?; Journal of
Symbolic Logic?

75

www.tark.org
golori.org/lori2019
faculty.econ.ucdavis.edu/faculty/bonanno/loft.html
www.aiml.net
esslli2019.folli.info

