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Static and Contextualized Vector Composition
Holographic Reduced Representations (HRR)

Modeling GL Semantics with HRRs
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Introduction

We explore three methods to represent sentences as vectors:
» Conventional vector composition
» Transformer-based contextualized embeddings
» Holographic Reduced Representations (HRRs)
We explore some semantic problems:
» Nouns as Vectors / Adjectives as Matrices
» Generative Lexicon encoded as Vector Binding

» Type Coercion in Vector Semantics

Brandeis University Fall 2024 James Pustejovsky Holographic Reduced Representations



Static and Contextualized Vector Composition

What Are One-Hot Vectors?

P> A one-hot vector is a binary vector used to represent
categorical data.

» For a vocabulary of size V/, each word is assigned a unique
index i where:
v; =[0,0,...,1,....0]
> Example:
» Vocabulary: ['cat”, "dog", "fish"]
> "cat’ — [1,0,0], "dog" — [0,1,0], "fish" — [0,0,1]
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Static and Contextualized Vector Composition

Limitations of One-Hot Vectors

» High Dimensionality:
Dimension of vector = V

For large vocabularies (V > 100, 000), the vectors become
inefficient.
» Lack of Semantic Information:
» No similarity between "cat” and "dog".
» All vectors are orthogonal.
» Solution: Use Word2Vec to map one-hot vectors into dense,
low-dimensional embeddings.
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Static and Contextualized Vector Composition

From One-Hot Vectors to Word Embeddings (Word2Vec)

Word2Vec learns dense vector representations for words by
analyzing their context in a corpus.

» Input: One-hot vector for each word.

» Output: Dense, low-dimensional embedding (w € RY).

Key ldea: Distributional Hypothesis
Words that appear in similar contexts have similar meanings.
Two training methods:

» Skip-gram: Predict context words from a target word.

» CBOW (Continuous Bag of Words): Predict a target word
from context words.
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Static and Contextualized Vector Composition

Example: Word2Vec Conversion

» Vocabulary: ['cat”, "dog", "fish"]

» One-hot vectors:
"cat” =[1,0,0], "dog’' =10,1,0], "fish" =][0,0,1]
» Dense embeddings (Word2Vec output):
"cat” =[0.5,0.1,0.3], "dog" = [0.4,0.2,0.5], "fish” =[0.3,0.8,0.2]
» These embeddings capture semantic similarity:

Similarity(" cat”, "dog") > Similarity(" cat”, "fish")

CS 135 - Brandeis University Fall 2024 James Pustejovsky Holographic Reduced Representations



Static and Contextualized Vector Composition

What is Skip-gram?

» Word2Vec learns dense vector representations for words by
predicting their context in a corpus.

» Skip-gram Model:

> Predicts context words (w.) given a target word (w;).

» Objective: Maximize the probability of context words given the

target word:
P(we|wt)

» Embedding Space:

» Each word is mapped to a dense vector (d ~ 100 — 300).
» Vectors capture semantic similarity (e.g., "king" and "queen”).
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Static and Contextualized Vector Composition

Details of the Skip-gram Model

Objective Function

For a given corpus, the Skip-gram model maximizes the conditional
probability:
-

IT II Pwesilw)

t=1 —c<j<c,j#0
where:
> w;: Target word.

» w;y;: Context words within a window of size c.
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Static and Contextualized Vector Composition

Details of the Skip-gram Model

Log-Likelihood

Taking the logarithm, the objective becomes:

-
L= Z Z log P(wj|we)

t=1 —c<j<c,j#0

Conditional Probability
The probability P(w;j|w;) is modeled using softmax:

—V'I;Hrjth)

wevVv exp(uvTvat)

» v,,: Embedding for the target word.

exp(u

P(weyjlwe) = 5

» uy, : Embedding for the context word.

CS 135 - Brandeis University Fall 2024 James Pustejovsky Holographic Reduced Representations



Static and Contextualized Vector Composition

Skip-gram Training Steps

1. Initialize two embedding matrices:
> W (target embeddings): |V| x d
> W’ (context embeddings): |V| x d
2. For each target word w;:
> Predict each context word w, in the window [—c, c].

3. Compute the loss (negative log-likelihood):
L = — log P(wc|wt)

4. Update W and W' using stochastic gradient descent (SGD).
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Static and Contextualized Vector Composition

Computing Gradients for Skip-gram

For a single pair (wg, we), the loss is:
L = —log P(wc|wt)
Gradient for Target Embedding (v,,)

oL

OV,

=y, — Y P(w|we)uy

wev

Gradient for Context Embedding (u,,)

Pu =V > P(wlwe)vi,

wevV

The gradients are used to update the embeddings via SGD.
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Static and Contextualized Vector Composition

Negative Sampling: Reducing Computation

» Problem: Softmax requires summing over all words in the
vocabulary (|V]).

» Solution: Use Negative Sampling to approximate softmax.

k

log P(wc|wt) = log a(uVTvaWt)—i-Z Ev~p,(w) [Iog o(—u)vy,)
i=1

» Pp(w): Noise distribution for negative samples.

» k: Number of negative samples per positive pair.
Advantages

» Reduces computation from O(|V]) to O(k).

» Focuses on distinguishing the target-context pairs from
random noise.
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Static and Contextualized Vector Composition

Worked Example: Skip-gram Training Step

Consider a toy vocabulary: V = {cat,dog, fish}.
» Target word: w; = cat.
» Context words: w, € {dog, fish}.
» Embedding dimension: d = 2.
P Initialize embeddings:
Veat = [0.1,0.3],  ugog = [0.2,0.4], ugenh =[0.3,0.1]
Compute P(w¢|w;) for w. = dog:

-
explUy,.V
P(WC|Wt) _ P( dog cat)

ZWEV exp(u,), Veat)

Numerator: UdogVeat = (0.2)(0.1) + (0.4)(0.3) = 0.14

Denominator:
Sum = exp(0.14) + exp(0.11) + exp(0.03)

Result: P(do |Cat) B exp(014) B
& ~ exp(0.14) + exp(0.11) + exp(0.03) "’
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Static and Contextualized Vector Composition

Final Word Embeddings

> After training, each word has two embeddings:
> v, : Represents the word as a target.
> u,,: Represents the word as a context.
» Combine these embeddings (e.g., by averaging) to create the

final word vector:
_ th + ch

2
» These embeddings capture semantic similarity and are used in
downstream tasks.
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Static and Contextualized Vector Composition

Using Word2Vec for Analogical Reasoning

» Analogical reasoning involves finding relationships between
pairs of words or concepts.

"king is to queen as man is to woman.”
» Represented mathematically as:
king — man ~ queen — woman.

» Captures relational patterns in vector space.
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Static and Contextualized Vector Composition

Latent Semantic Analysis (LSA)

» LSA uses singular value decomposition (SVD) to reduce the
dimensionality of term-document matrices.

P> Represents words and documents as vectors in a semantic
space:

M e R\V|><\D| —  Mycduced € R|V|Xk.
» Captures semantic relationships:
cosine similarity between word vectors reflects semantic similarity.
Limitations

» LSA focuses on co-occurrence, not relational patterns.

» Cannot explicitly represent analogies.
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Static and Contextualized Vector Composition

The Parallelogram Hypothesis

» Hypothesis: Analogical reasoning can be represented as
geometric relationships in vector space.
> Example:
king — man + woman = queen.

» Geometric Interpretation:

» The vector from man to king is parallel to the vector from
woman to queen.

» Visualized as a parallelogram:
Given three points, solve for the fourth:

queen = king — man + woman.
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Static and Contextualized Vector Composition

How Word2Vec Derives Analogies

> Word2Vec learns dense word embeddings that capture
semantic and syntactic relationships.

» Relationships are encoded in the directions between vectors.

» Analogy-solving formula:
w, = arg maxcos (W, wy — wi + ws),
weV
where:

> w; = man,w; = king, w3 = woman,
> w,; = queen.
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Static and Contextualized Vector Composition

Worked Example: Word2Vec Analogy

Example: Solve "king is to queen as man is to woman":
> Vectors:

king = [0.8,0.6], queen =[0.9,0.7],

man = [0.2,0.4], woman = [0.3,0.5].

» Compute:
queen = king — man + woman.

queen = [0.8,0.6] — [0.2,0.4] 4 [0.3,0.5].

Result:
queen = [0.9,0.7].
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Static and Contextualized Vector Composition

Vector Analogy with Parallelogram Visualization

woman -~ 4

q
woman /' m
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Static and Contextualized Vector Composition

Why Does Word2Vec Work?

» Co-occurrence Modeling:
» Word2Vec captures context relationships via training on
skip-grams.
» Semantic Directionality:
» Embeddings encode directional relationships (e.g., gender,
tense).
» Vector Arithmetic:

» The geometry of word embeddings allows analogical reasoning
through addition and subtraction.
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Static and Contextualized Vector Composition

What Word2Vec Does Not Explain

» Syntax-Semantics Interface:

» Analogies focus on semantics; no explicit representation of
syntactic structure.

> Complex Analogies:
» Cannot handle multi-step or hierarchical relationships.
» Context Dependence:

» Word2Vec embeddings are static, ignoring polysemy and
contextual nuances.

» Empirical Limitations:

» Only works well for analogies seen in training or closely related
domains.
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Static and Contextualized Vector Composition

Key Takeaways

» Analogical reasoning is a fundamental capability of word
embeddings like Word2Vec.
» The parallelogram hypothesis explains how analogies are
geometrically encoded in vector space.
P Limitations:
» Word2Vec does not capture syntax or hierarchical relationships.
> Contextualized embeddings (e.g., BERT) address some
limitations but are less interpretable.
» Analogical reasoning with vectors demonstrates the power and
constraints of distributional semantics.
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Static and Contextualized Vector Composition

Transformer-Based Contextualized Embeddings

Overview of Self-Attention in Transformers

> Self-attention computes relationships between tokens in a
sentence.

» Outputs contextualized representations for each token.

Self-Attention Formula
For query (Q), key (K), and value (V) matrices:

Attention(Q, K, V) = softma <QKT> %
I PRAR = X
Vi

> Q,K,V € R™% where n is the number of tokens and dj is
the embedding size.

P> Each token generates its own query, key, and value vectors.
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Static and Contextualized Vector Composition

Step 1: Input to Embeddings

Given a sentence:

"The bank will not approve the loan.”

» Tokens: [The, bank, will, not, approve, the, loan].
» Embedding dimension: dyx = 4 (for simplicity).

Token embeddings (random initialization for this example):

x1 = [1,0,1,0], x, = [0,1,0,1], ...
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Static and Contextualized Vector Composition

Step 2: Compute Query, Key, and Value Matrices

Each token embedding is projected into query, key, and value
spaces using learned weight matrices:

Q=XWqp, K=XWgk, V=XWy
Example weights (Wg, Wi, W), € R%*):

1 010 01 01
01 01 1 01 O
Woe=11 000" ™ =1|0 01 1|’
0111 1 1 00
For token 1 (x; = [1,0,1,0]):
1 010
01 01
Ql—X1WQ—[1,0,1,0] 100 0 —[2,0,1,0]
0111
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Static and Contextualized Vector Composition

Step 3: Compute Attention Scores

Compute scaled dot-product attention:

Attention(Q, K, V) = softmax <QKT) %
o Vi

For @1 and Ko:
Q1 K>»=1[2,0,1,0]-[0,1,0,1] =0

Attention scores matrix:

Q-K ..
Scores; j = ﬁ, i,je{l,...,n}
Normalize scores using softmax:
exp(z;)

softmax(z;) =

2. exp(z)
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Static and Contextualized Vector Composition

Step 4: Compute Weighted Values

For token 1:

Attention(Q K V) = softmax (QIK ) 74
1, "\,
vV dk

Example:

[0,1,2]
Nz

Use scores to compute weighted sum:

Scores;, = softmax ( > = [0.04,0.11,0.85]

n
z1 = E Scoresy j - Vj
Jj=1
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Static and Contextualized Vector Composition

Worked Example: Final Contextualized Embeddings

For each token i, compute:

n
z; = ZAttention(Qi, K;, V)
=1

Result:
ral

z
‘|, Zermk

Y
Zn

Aggregated sentence embedding:
sTransformer = Mean(Z)

or use special token [CLS].
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Holographic Reduced Representations (HRR)

Motivation for Hypervectors and Hyperdimensional
Computing

» Hypervectors: High-dimensional vectors (d > 1000) used to
represent information in a distributed manner.
» Inspired by the properties of the brain:
» Robustness to noise.
» Ability to store and retrieve large amounts of information.
> Key idea:
Complex structures can be represented as combinations of
simple high-dimensional vectors.
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Holographic Reduced Representations (HRR)

What is a Hyperdimensional Vector Space?

» A hyperdimensional vector space is a high-dimensional space
(d > 1000) used to represent information.
> Hypervectors (v € RY):
» Randomly initialized.
» High dimensionality ensures approximate orthogonality
between vectors.

Properties of High-Dimensional Spaces
» Orthogonality:

For random vectors v,w € R? . v-w~0 (ifv#w).
> Stability:
lvi +v2 + - - + v, grows with n.
» Capacity:

Large spaces can encode exponentially many distinct patterns.
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Holographic Reduced Representations (HRR)

How do Hyperdimensional Spaces Encode Patterns”

> Key Property: In a hyperdimensional space R? with
d > 1000:

Number of distinct patterns is exponential in d.

» Intuition:

» A random hypervector v € RY has d components.
» Each component can take on many possible values (e.g.,
[—1, 1] for bipolar vectors or R for real-valued vectors).

> Mathematical Argument:
> Consider d-dimensional binary vectors {0,1}¢:

Total number of distinct vectors: 29.

» For real-valued or bipolar vectors, the number of distinct
patterns grows even faster.
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Holographic Reduced Representations (HRR)

Geometric Perspective: Orthogonality in High Dimensions

» High-dimensional spaces have the property that random
vectors are nearly orthogonal:

vi-vp &~ 0, if vy,vy are random.

» Implication:

» You can generate exponentially many random hypervectors
that are distinguishable (linearly independent or approximately
orthogonal).

> Example:

» |n R0:000 hijlions of random vectors will have dot products
close to zero.
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Holographic Reduced Representations (HRR)

Superposition and Binding in Hyperdimensional Spaces

» Superposition (addition):
V=V vt vy,

> Even with n > 1, the resulting vector is still distinguishable
due to high dimensionality.

» Binding (e.g., circular convolution):
c=a®b.

» Each binding operation produces a new, distinguishable
pattern.
» Exponentially Growing Combinations:
» n hypervectors can generate:

2" combinations via binding and superposition.
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Holographic Reduced Representations (HRR)

Worked Example: Exponential Growth of Patterns

Consider d = 10,000 and binary vectors {0,1}¢:

» Total possible distinct vectors:

210000 (3 astronomically large number).

» Now allow for superposition and binding:

» Superposition combines n vectors into a unique vector.
» Binding generates entirely new patterns:

a®b is unique for any a,b.

> Result:
With high-dimensional vectors, you can encode exponentially
many relationships.
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Holographic Reduced Representations (HRR)

Key Benefits of Exponentially Large Spaces

» Robustness:

» Small errors (noise) in the components of hypervectors do not
significantly affect overall distinguishability.

> Scalability:

» Exponentially large capacity ensures scalability for encoding
large vocabularies, complex patterns, and relationships.

» Expressiveness:
» Binding and superposition operations allow for compositional
representations (e.g., hierarchical structures or analogies).
» Similarity Preservation:

» High-dimensional vectors can preserve similarity in the space
(e.g., similar words have closer embeddings).
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Holographic Reduced Representations (HRR)

Comparison: One-Hot Vectors vs. Hypervectors

» Dimensionality:
» One-hot: | V| (grows with vocabulary size).
» Hypervectors: d (fixed, large dimensionality, e.g., d = 10, 000).
» Orthogonality:
» One-hot:
vi-v; =0 fori#j.

» Hypervectors:
vi-vj~ 0 (approximate for random vectors).

> Representation Power:

» One-hot: Only encodes identity.
» Hypervectors: Encodes identity, similarity, and relationships.
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Holographic Reduced Representations (HRR)

Computational Distinctions

> Storage Requirements:

» One-hot: Requires a vector of size | V| for each token.
» Hypervectors: Fixed size d, independent of vocabulary size.

» Operations:

» One-hot: No meaningful operations (e.g., addition,
multiplication).
» Hypervectors: Supports binding, superposition, and correlation.

a®b, a+b, a®bl

> Scalability:
» One-hot: Becomes infeasible for large vocabularies
(|V| > 10°).

» Hypervectors: Efficient for large vocabularies due to fixed
dimensionality.

CS 135 - Brandeis University Fall 2024 James Pustejovsky Holographic Reduced Representations



Holographic Reduced Representations (HRR)

Advantages of Hypervector Encodings

» Compositionality:
> Represent relationships through binding:

relation =a® b.
» Combine multiple pieces of information:
context = v; 4 vo + v3.

» Noise Tolerance:
» Small changes to components do not disrupt overall encoding.
» Similarity Preservation:

» Similar inputs produce similar hypervectors, enabling clustering
and matching.

> Scalability:
» Fixed-dimensional encoding handles large vocabularies and
complex structures.
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Holographic Reduced Representations (HRR)

Comparison: One-Hot Vectors vs. Hypervectors

Feature One-Hot Vectors Hypervectors
Dimensionality | |V| (vocab size) Fixed d (e.g., 10,000)
Orthogonality Exact Approximate
Representation Identity only Identity + relationships
Operations None Binding, superposition, correlation
Storage Large for large | V| Fixed-size

Scalability Limited High
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Holographic Reduced Representations (HRR)

Why Orthonormality is Important

P In high-dimensional spaces, random hypervectors are
approximately orthonormal:

v-wx0, [v|=[w|]=1.

» Key Implication: Vectors do not interfere with each other in
superposition or binding.
» Superposition: Combines multiple vectors while keeping them
distinguishable.
S=V;y+Vo+---+v,

» Binding: Combines vectors into unique encodings using

circular convolution.
b = Vi ® Vo
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Holographic Reduced Representations (HRR)

Circular Convolution: Binding Vectors

Circular convolution is defined as:

d—1

(a®b); = Z 3j - b(i—j) mod d-
=0

Properties of Circular Convolution

» Dimensionality:
a®bcR?

» Uniqueness: Produces a distinct vector for each pair of inputs.

» Approximate Inverse:

a®b®bl~a
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Holographic Reduced Representations (HRR)

Correlation: Unbinding Vectors

Circular correlation retrieves one vector from a bound pair:

(a®b)®b!~a.

Definition of Circular Correlation
Circular correlation is defined as:

d—1
(c®b™)i=> ¢ bj—i) modd-
j=0

Key Insights

» Uses the approximate orthonormality of random vectors.

» Recovers the original vector when the bound pair is unbound.
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Holographic Reduced Representations (HRR)

Approximate Orthogonality in High Dimensions

For two random hypervectors v,w € RY:

d
V-W = Viw;.
i=1
If v; and w; are independent and zero-mean:

> Expected value:
El[v-w] =0.

P Variance decreases with dimensionality:

Varlv-w] = O (Cll) .

For large d, the dot product is negligibly small:

v-w=0.
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Holographic Reduced Representations (HRR)

Implications for Encoding in NLP

» Superposition: Adding hypervectors preserves
distinguishability:

s=vi+vy = s-vi>0.
» Binding: Convolution produces unique encodings:
b=vi®wvs.

Since vy - vo &= 0, the result is not confounded by interference.

» Unbinding: Correlation retrieves components reliably:

(b@vyt) ~v;.
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Holographic Reduced Representations (HRR)

Example: Semantic Role Binding

Represent the sentence " The dog chased the ball”:
> Words: dog, chased, ball.
> Roles: subject, verb, object.

Encoding:
S = (dog ® subject) + (chased & verb) + (ball ® object).

Retrieval:

P> Retrieve the subject:

dog ~ S ® subject !.
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Holographic Reduced Representations (HRR)

Example: Sequential Encoding

Encode " The dog sleeps”:
> Words: the, dog, sleeps.

» Positional encoding:
sequence = the + Perm(dog) + Perm?(sleeps).

Retrieval:

P Retrieve "dog" by reversing the permutation:

dog ~ sequence ® Perm™1.
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Holographic Reduced Representations (HRR)

Vector Algebraic Composition Operations

Three primary operations are used in hyperdimensional computing:
» Superposition (Addition):

c=a+b

Combines vectors while preserving their individual
contributions.

» Binding (Multiplication or Convolution):
c=a®b

Creates a unique composite vector that is distinct from the
inputs.

» Permutation:
Random reordering of vector components to represent
positional information.
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Holographic Reduced Representations (HRR)

Convolution as Binding

Circular Convolution
The binding operation in HRRs is defined as circular convolution:

d-1
ci = E aj - b(i—j) mod d
Jj=0

Here:
> a=[ag,a1,...,a4-1]
» b = [bo, by, ..., bg1]

> Properties:
» Produces a vector of the same dimension d.
» Distributes information of a and b across c.
» Approximately invertible.
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Holographic Reduced Representations (HRR)

Worked Example: Circular Convolution

Given:
a=][1,2,3], b=]0,1,0]

Compute:
co=ayg-bypt+ar-bb+a-bp=1-0+2-0+3-1=3

co=ag-bi+ar-bgpta-bb=1-1+2-0+3-0=1
o=ay-br+a-bi+a-b=1-04+2-14+3-0=2

Result:
c=[3,1,2]
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Holographic Reduced Representations (HRR)

Deconvolution as Unbinding

Deconvolution
To retrieve a from ¢ and b, perform circular correlation:

d—1
3= ¢ bi_j) modd
Jj=0
» Inverse Property:
ar~c®b!

» Enables retrieval of the original components bound together.

CS 135 - Brandeis University Fall 2024 James Pustejovsky Holographic Reduced Representations



Holographic Reduced Representations (HRR)

Summary of HRR Operations

» Binding (Encoding):
binding = wy,ord ® Frole
» Superposition:
SHrRR =S +V + Neg+ 0O

» Unbinding (Decoding):

-1

Wyord = SHRR ® Fgj.

HRRs provide a robust framework for representing and
manipulating structured information in high-dimensional spaces.
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Holographic Reduced Representations (HRR)

Comparison of Methods

A comparison of the three methods:

Feature Transformer | Conventional HRR
Context-Sensitivity High None Moderate
Syntactic Structure Implicit Ignored Explicit
Polysemy Handling Excellent Poor Limited
Invertibility No No Yes
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Holographic Reduced Representations (HRR)

Overview of Baroni & Zamparelli’s Theory

> Nouns: Represented as dense vectors.
ncRY
> Adjectives: Represented as linear transformations (matrices).
Ac Rdxd

» Modification: Apply the adjective to the noun using
matrix-vector multiplication.

Modified noun: n’ = A -n
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Holographic Reduced Representations (HRR)

Worked Example: Baroni & Zamparelli’s Theory

Let:
» Noun: n=[1,0,1]"

> Adjective: A =

o O =
O = O
—

Compute:

[ay

n=A.-n=

o O

00 1 1
1 1f-|0| =1
01 1 1
Interpretation:

» Adjective transforms the noun's semantic space.

» Matrix captures how adjectives modify meaning (e.g., “red”
or “big").

CS 135 - Brandeis University Fall 2024 James Pustejovsky

Holographic Reduced Representations



Holographic Reduced Representations (HRR)

Strengths and Limitations of Baroni & Zamparelli's Theory

» Strengths:
» Captures compositional semantics via linear transformations.
» Allows for a systematic representation of adjective effects.
> Limitations:
» High parameter cost (d? parameters per adjective).
» Limited interpretability of learned matrices.
» Ignores distributed binding (no explicit roles or structure).
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Holographic Reduced Representations (HRR)

Overview of HRR Approach

> Nouns: Represented as high-dimensional hypervectors.
neR?, d>> 1000
P> Adjectives: Represented as hypervectors.
ac R
» Binding: Adjectives bind to nouns using circular convolution.
n=a®n
» Superposition: Combine multiple adjective-noun pairs.

s:n{[_‘_né—i_
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Holographic Reduced Representations (HRR)

Worked Example: HRR Approach

Let:
» Noun hypervector: n = [1,0,1]
» Adjective hypervector: a = [0, 1, 0]

Compute binding via circular convolution:
co=a-hg+ar-nmn+a-n=0-1+41-14+40-0=1
ct=ay-m+a-n+a-n=00+1-1+0-1=1

G=a-m+a-n+a-n=0-1+1-04+0-1=0

Resulting vector:
n =[1,1,0]
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Holographic Reduced Representations (HRR)

Comparison: Baroni & Zamparelli vs. HRR

Feature

Baroni & Zamparelli

HRR

Representation of Adjectives

Matrices (d X d)

Hypervectors (d)

Composition Operation

Matrix-Vector Multiplication

Circular Convolution

Dimensionality 0(d?) (scaling issue) Fixed (d)
Interpretability Low Moderate
Flexibility (e.g., roles) Limited High (binding and superposition)
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Holographic Reduced Representations (HRR)

The Role of Telic in Generative Lexicon

» The Telic role in GL Theory captures the purpose or function
of an entity.
Telic(pen) = write-with,  Telic(car) = drive

» Adjectives modify nouns by binding to specific Qualia roles,
including the Telic role.
» Disambiguation occurs when an adjective aligns with the Telic
role of the noun.
Examples of Telic-Driven Disambiguation

» "Fast car” — Telic: drive (interpreted as speed when driving).

» "Good pen” — Telic: write-with (interpreted as quality in
writing).

» "Loud speaker” — Telic: produce-sound (interpreted as
volume of sound production).
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Holographic Reduced Representations (HRR)

Selective Binding with Telic Role

» Adjective-noun composition involves selective binding:
Adjective ® Telic(Noun)

» This highlights the Telic role of the noun as the locus of
modification.

» Formalization:
a® ITelic®n

Interpretation of Adjective Modification

The adjective binds to the Telic role, influencing how the noun is
interpreted in context.

"Fast car” = fast ® drive(car)
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Modeling GL Semantics with HRRs

HRR Representation of Telic Role

>
>
>
>

Nouns: Represented as hypervectors (n).
Adjectives: Represented as hypervectors (a).
Telic Role: Represented as a hypervector (rrelic)-

Binding: Use circular convolution to encode adjective
modification of the Telic role.

composition = a ® rrejic ® n

» Superposition: Combine multiple adjective-noun pairs for
broader contexts.
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Modeling GL Semantics with HRRs

Worked Example: " Fast Car”

Given:

» Noun: "car” (n=[1,0,1]).

» Adjective: "fast” (a =[0,1,0]).

» Telic Role: "drive” (rreic = [1,1,0]).
Compute:

binding = a ® rygic ®n
Step 1 (Adjective-Telic binding):
co=agrp+arn+an=0-1+41-040-1=0
Step 2 (Adjective-Telic-Noun binding):
cy = conp+ cimy + cenyp = ...

Result: binding = ...
The final vector encodes "fast car’ in terms of its Telic role,
focusing on the meaning of "fast” in the context of driving.
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Modeling GL Semantics with HRRs

Worked Example: " Good Pen”

Given:

» Noun: "pen” (n=[0,1,0]).

» Adjective: "good” (a = [1,0,1]).

» Telic Role: "write-with” (ryeic = [0, 1,1]).
Compute:

binding = a ® ryeic ®n
Result:
binding = ...

This vector captures the modification of "pen” by "good” with
respect to the Telic role, emphasizing its quality in writing.
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Modeling GL Semantics with HRRs

What is Type Coercion?

» Type Coercion occurs when a verb's argument requires a type
mismatch to be resolved.

» The mismatched argument is coerced into the required type
using its Qualia Structure.

Example: "Mary enjoyed a coffee”
> Verb: "enjoy” requires an event as its object.
» Noun: "a coffee” is an entity, not an event.

» Coercion: The Telic role of "coffee” provides the event "drink
a coffee”.

"Mary enjoyed a coffee” = " Mary enjoyed drinking a coffee”
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Modeling GL Semantics with HRRs

Type Coercion Using Qualia Structure

» The Qualia Structure of " coffee”:

» Formal: beverage.
» Constitutive: made-of-water.
» Telic: drink.
> Agentive: brewed.
» The Telic role provides the required event for coercion:

Telic(coffee) = drink(coffee)

Coercion Process
1. Verb identifies a type mismatch (entity vs. event). 2. Use the

Qualia Structure to resolve the mismatch. 3. Bind the Telic role to

the object and recompose:

enjoy ® Telic(coffee) = enjoy(drink(coffee))

Holographic Reduced Representations
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Modeling GL Semantics with HRRs

HRR Representation of Coercion

» Nouns: Represented as hypervectors (n).

» Telic Role: Represented as a hypervector (Fejic)-

> Verb: Represented as a hypervector (Venjoy).

» Coercion: Bind the verb to the Telic role of the object:

composition = Vepjoy ® Ielic ® Neoffee
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Modeling GL Semantics with HRRs

Worked Example: "Mary Enjoyed a Coffee”

Given:
» Noun hypervector: neoffee = [1,0, 1].
» Telic Role: ryeic = [0, 1,0].
> Verb: venjoy = [1,1,0].

Compute coercion: .
COMPOSItion = Vepjoy ® ITelic ® Neoffee

Step 1 (Verb-Telic binding):
coo=wn+twvrn+wn=1-0+41-04+40-1=0
Step 2 (Verb-Telic-Noun binding):
co = cono + ciny + conp = ...

Result:
composition = |[. . .|

This vector encodes the coerced meaning "enjoy drinking a coffee.”

CS 135 - Brandeis University Fall 2024 James Pustejovsky Holographic Reduced Representations



Modeling GL Semantics with HRRs

Denotational Semantics and Type-Theoretic Interpretation

» [expression] — mathematical structure
> Examples:

> Words: [dog] = vector in RY.

> Sentences: ['Dogs bark”] = truth value {0,1}.
P In vector-based semantics:

> Nouns: [N]:RR?

> Adjectives: [Adj] : RY — R

> Verbs: [V] : RY — R

» Sentence composition:

["Dogs bark] = function application or combination of vectors.

CS 135 - Brandeis University Fall 2024 James Pustejovsky Holographic Reduced Representations



Modeling GL Semantics with HRRs

Conventional Vector Composition

> Words are vectors: [w] € RY.
» Composition is performed using vector addition or pointwise

multiplication.

Denotational Semantics
Let wi, ws € RY, then:
['fast car'] = Vfast + Vear-

Type-Theoretic Interpretation

» Nouns: e: R?

» Adjectives: e — e : RY — R
Composition:

Adj(N) : RY — R

["fast”(["car’]) = Vfast + Vcar-
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Modeling GL Semantics with HRRs

Baroni and Zamparelli: Adjectives as Matrices

> Words are assigned different types:

> Nouns: RY
> Adjectives: RY — R? (matrices)

» Composition uses matrix-vector multiplication.
Denotational Semantics

Let:
> Rd
Vear €
> Mfast S RdXd

Then:
["fast car"] = Mgt - Vear-
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Modeling GL Semantics with HRRs

Baroni and Zamparelli: Adjectives as Matrices

Type-Theoretic Interpretation

» Nouns: e : RY

> Adjectives: e — e : RY — R (linear maps)
Composition:

Adj(N) : R? — R
["fast”](["car"]) = Mtast - Vcar-
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Modeling GL Semantics with HRRs

HRR: Binding with Circular Convolution

» Words and roles are hypervectors (R?).

» Binding is performed using circular convolution.

Denotational Semantics
Let:

» Vear, Viast € RY
Then: ['fast car’] = Vfast ® Vcar, Where:
d—1

(Vfast & Vcar)i = E Vfast,j * Vear,(i—j) mod d-
Jj=0
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Modeling GL Semantics with HRRs

HRR: Binding with Circular Convolution

Type-Theoretic Interpretation

» Nouns: e : RY

> Adjectives: e — e : RY — R (convolution operators)
Composition:

Adj(N) : RY — R
['fast"](["car’]) = Vfast ® Vear-
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